
Introduction

Crop yield prediction (CYP) is a major problem in
agriculture. Starting each growing season, agricultural
planners require estimating the yield for all the
involved crops (Frausto-Solis et al., 2009). Regrettably,
CYP is diff icult because it depends on many inter-
related factors (Liu et al., 2001; Marinković et al.,
2009). Moreover, yield is also affected by farmer
decisions (such as applied irrigations, pest and
fertilizers applications, crop rotation, and land

preparation) and incontrollable factors (such as
weather, subsidies and market). As stated by Ruß
(2009), yield prediction traditionally has relied on
farmers’ long-term experience for specific fields, crops
and climate conditions, which can be inaccurate.
Simple estimators, such as the average of several
previous yields or the last obtained yield, are also used.
Nevertheless, crop yield varies spatially and temporally
with a non-linear behavior (Liu et al., 2001; Drum-
mond et al., 2003; Schlenker & Roberts, 2006), intro-
ducing large deviations from one year to another. Thus,
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more efficient methods have been developed, which
can be classif ied as crop growth models and data-
driven models. Crop models perform an abstraction of
the dynamic mechanistic of the plant’s physiological
stages by fitting them into a mathematical model (Safa
et al., 2004). Most of the mechanistic models are crop-
specif ic: SOYGRO for legumes (Wilkerson et al.,
1983); AFRCWHEAT2 (Porter, 1993) and Sirius
(Jamieson et al., 1998a) for wheat; CERES-Maize
(Jones & Kiniry, 1986) for corn. Some others, such as
SUCROS (Spitters et al., 1988), SUCROS2 (Gou-
driaan & van Laar, 1994) and STICS (Brisson et al.,
1998) are available for various crop types through
parameter fitting. An evaluation performed by Jamie-
son et al. (1998b) for the wheat crop shows that some
of these models has a reasonable accuracy, with
deviations within 10%. Regrettably, as reported by
Varcoe (1990) and Drummond et al. (2003), this kind
of models is expensive in terms of time and money,
being impractical for massive application and agri-
cultural planning. On the other hand, data-driven
models are built empirically, not requiring a deep
knowledge about physical mechanisms that produced
the data. Such techniques are inexpensive, relatively
easy to apply, and do not need a predefined structure
of the model. Consequently, data driven models have
been widely applied in the last years using classical
statistics (Dixon et al., 1994; Sudduth et al., 1996) and
machine learning methods (Drummond et al., 2003;
Roel & Plant, 2004; Irmak et al., 2006). Statistical
models are represented by parametric structures tuned
with sum-of-squares residuals, validated by hypotheses
test and confidence intervals (Breiman, 2001).

The main regression application for CYP has been
linear with rather weak results (Drummond et al.,
2003); for instance, that implemented by Dixon et al.
(1994) and Sudduth et al. (1996), obtained solutions
ranging from bad to moderate results. Machine
Learning (ML) techniques are based on non-parametric
and semi-parametric structures, with validation relying
on prediction accuracy (Breiman, 2001). Regression
trees (Roel & Plant, 2004), artificial neural networks
(Liu et al., 2001; Drummond et al., 2003; Irmak et al.,
2006; Fortin et al., 2011) and support vector regression
(Jaikla et al., 2008; Ruß, 2009) are common ML
techniques applied for CYP purposes. Previous works
suggest that data-driven models have better adap-
tability for cropping planning than crop growth models
due to their friendly implementation and performance
(Safa et al., 2004; Irmak et al., 2006).

Some comparisons among regression models for
CYP have been made, looking for the most accurate
technique. Drummond et al. (2003) and Fortin et al.
(2011) have compared classical statistical models
against Artif icial Neural Networks (ANNs). Ruß
(2009) compared ANNs, regression trees and support
vector regression. Despite the high site-dependency,
neural networks have been widely recognized as robust
models, and they have obtained good results for CYP
(Liu et al., 2001; Fortin et al., 2011). On the other hand,
support vector regression models have proven to be
more accurate than ANN and regression trees for some
crop datasets (Ruß, 2009). Regrettably, previous
comparisons consider only a very small number of
crops. Thus, information for applying ML techniques
as a planning tool is usually not enough. As a conse-
quence, more extensive evaluations involving a greater
number of crops are required. Besides, an important
issue related to previous CYP techniques comparisons
is the fact that the attribute subset is always the same
for all the evaluated techniques. Different machine
learning algorithms may perform better if they use a
distinct set of attributes in the same training dataset
(Kohavi, 1995). Therefore, a fairer comparison should
include some metrics to measure their performance
with the best attribute subset for each technique.
Considering the above, this work presents a com-
parison among four popular machine learning techni-
ques for CYP in a large irrigated area in Mexico with
a typical cropping plan. The linear regression techni-
que, which is frequently used to CYP is also assessed.
The evaluation is made with ten crop datasets to
provide a perspective of using ML techniques for real
planning purposes. To ensure fairer conditions, the best
attribute subset for each technique is determined. A
complete algorithm enumerates all the attribute
combinations, building a regression model of each
subset. The models use the greater part of samples from
the training dataset, except the most recent, which are
used for measuring the performance. In this work, a
popular set of ML and one statistical technique for
CYP are ranked: multiple linear regression, M5-Prime
regression trees, perceptron multilayer neural net-
works, support vector regression, and k-nearest
neighbor. The models are evaluated with data held-out
for testing. Results per technique are compared. The
potential attributes considered for this work were
planting area (ha), applied irrigation water depth (mm),
cumulative rainfall (mm), cumulative global solar
radiation (kWh m–2), maximum, average and minimum
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temperatures (°C) and duration of the season-duration
cultivar (short, medium, long). To build the models,
historical data of ten crops were obtained from one
irrigated zone in Sinaloa Mexico, developing the
experimentation in realistic conditions. In the results
section, we present the best CYP technique for massive
crop datasets and the most influential attributes for
each model.

Material and methods

Case study

There are two types of irrigation schemes in Mexico:
irrigation units and irrigation districts. The former are
about 20,000, covering an area of 2.9 million ha. These
are managed directly by the agricultural producers. On
the other hand, there are 83 irrigation districts covering
an area of 3.5 million ha (Ojeda-Bustamante et al.,
2007). These were formerly managed by the federal
government and turned over to 474 water user
associations (also called “irrigation modules”). Both,
irrigation districts and units require modern technology
and methods to improve their planning process. This
technology should be inexpensive and effective enough
to be applied to as many units or modules as possible.
For this reason, this work was carried out in the
Irrigation District 075 (ID-075), located in the north
of the state of Sinaloa, México. Specifically, data from

the irrigation module “Santa Rosa” was used. This is
the largest module in the District, and is located near
to the city of “Los Mochis”, at 25° 55' 2.684" N and
109° 10' 25.297" W; with an average altitude of 15 m
(Fig. 1). Two data were collected for this work:
a) agricultural production data, and b) weather
information data. The former included records at farm
level regarding planting area, crop species and variety,
day and quantity of irrigated water, starting and ending
sowing dates and crop’s yield. Such data were obtained
from the Spriter-GIS system, a tool for irrigation
management and statistical monitoring used in the
module (Ojeda-Bustamante et al., 2007). The second
dataset was composed of climatological variables such
as rainfall, solar radiation, and temperatures. Weather
data were collected from two meteorological stations
located in the module. The two data-sources were
merged into one single database, using the sowing date
and the length of each growing-stage to integrate the
climatological data. Each record in that database
contains a crop with a cultivated area, agricultural
production and the weather variables monitored during
the crop season. Ten crop datasets were extracted from
the merged database (Table 1).

Only crops and records from the fall-winter season
in the years 1998-2006 were considered. The periods
1998-2004 and 1998-2005 were used for training,
while 2005 and 2006 were used for testing
(respectively). To simplify future references of these
datasets, an ID is assigned in the first column. Table 1
describes the quantity of records and periods of time

Figure 1. Irrigation module III-1, “Santa Rosa” localization.
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used for the training and testing stages. In order to
maintain realistic conditions, the last year of available
data was reserved for testing in each training-testing
datasets.

Eight attributes were selected as potential predictor
variables (Table 2), most of them have been considered
important for CYP in previous works. For instance:
IWD (Safa et al., 2004); SR (Dixon et al., 1994; Safa
et al., 2004); RF (Drummond et al., 2003; Safa et al.,
2004; Irmak et al., 2006); temperature (Dixon et al.,
1994; Drummond et al., 2003). In addition, we used
two attributes in our work: Planning Area (PA), which

should be used because the productivity of different
crops depends on it; Season Duration Cultivar (SDC)
is an important attribute in order to avoid mixing crops
with different duration cultivar. For SDC attribute, we
used an identifier denoting the kind of duration as it
is described in Table 2. These variables are referred to
as potential because this work uses a complete
algorithm to f ind the best attribute subset for each
regression technique. The weather attribute values
(solar radiation, minimum, average and maximum
temperatures) are estimated averaging the last three
crop growing stages, the most influential in the crop

Table 1. Testing and training samples distribution per crop dataset

Crop Total 
Samples Samples 

Testing 
Dataset Crop species1 Cultivar2 number of

in training in testing 
percentage 

ID samples
period period 

(%)
(1999-2004) (2005-2006)

CD01 Pepper Jalapeno 242 186 56 23.14
CD02 Common bean Mayocoba 508 449 59 11.61
CD03 Chickpea — 87 42 45 51.72
CD04 Chickpea Blanco Sinaloa 92 586 435 151 25.77
CD05 Corn Pioneer 30G54 2617 1685 932 35.61
CD06 Potato Atlantic 1250 951 299 23.92
CD07 Potato — 195 132 63 32.31
CD08 Tomato — 156 108 48 30.77
CD09 Tomato Saladette 461 413 48 10.41
CD10 Mexican husk tomatoes — 115 90 25 21.74

Total 6217 4491 1726

1 Pepper (Capsicum annuum), common bean (Phaseolus vulgaris), chickpea (Cicer arietinum), corn (Zea mays), potato (Solanum
tuberosum), tomato (Solanum lycopersicum), Mexican husk tomato (Physalis ixocarpa). 2 —: unspecified.

Table 2. Potential predictor attributes in crop datasets

Attribute
Attribute name Attribute description 

code name

PA Planting area (ha) Amount of surface dedicated for sowing

IWD Applied irrigation water depth (cm) Amount of water directly applied over the sowed surface, accumulated
during duration of the six crop growing stages

SR Solar radiation (kWh m–2) Average of accumulated daily radiation in the last three crop growing stages

RF Rainfall (mm) Amount of rainfall accumulated over the six crop growing stages (averaged
and accumulated from the nearest meteorological stations)

MaxT Maximum temperature (°C) Average of daily maximum temperatures registered in the last three crop
growing stages

AvgT Average temperature (°C) Average of daily mean temperatures registered in the last three crop growing
stages

MinT Minimum temperature (°C) Average of daily minimal temperatures registered in the last three crop
growth stages

SDC Season-duration cultivar Identif ies the kind-duration cultivar of the crop (1 = short, 2 = medium,
3 = long). Duration time (in days) is different depending on each crop type
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development. The target attribute is the yield expected
at the end of the cropping season, measured in (t ha–1).

Machine learning techniques

Machine Learning (ML) deals with problems where
the relation between input and output variables is not
known or hard to obtain. The “learning” term here
denotes the automatic acquisition of structural
descriptions from examples of what is being described
(McQueen et al., 1995). Unlike traditional statistical
methods, ML does not make assumptions about the
correct structure of the data model, which describes
the data. This characteristic is very useful to model
complex non-linear behaviors, such as a function for
crop yield prediction. ML techniques most successfully
applied to CYP have been M5-Prime regression trees
(Wang & Witten, 1997; Frausto-Solís et al., 2009;
Marinković et al., 2009; Ruß & Kruse, 2010), artificial
neural networks (Liu et al., 2001; Drummond et al.,
2003; Safa et al., 2004; Fortin et al., 2011), support
vector regression (Ruß, 2009) and k-nearest neighbor
(Zhang et al., 2010). However, no comparisons
covering all the aforementioned techniques have been
made for a large amount of crops.

Multiple linear regression

Despite not being properly a ML technique,
Multiple Linear Regression (MLR) has been applied
frequently for CYP, reason why it is included in this
comparison. MLR is a popular statistic technique
which can be applied to predict the value of a
dependent variable Yi, using a set of independent or
explanatory variables Xij (Hair et al., 1987). As is
indicated by Wasserman (2004), the MLR model is
described by:

[1]

where k is the quantity of explanatory variables, Bj is
the regression coefficient j, Xij is the j value for the
observation i and ∈i the residual error. Assuming XTX
is a (k × k) non-singular matrix, an approximation for
B (β

–
) can be obtained by Eq. [2]:

[2]

And Eq. [1] can be written as

[3]

In expression [3] the individual contribution of
attribute Xij to the Yi yield is given by the j-th element
of vector β. The last expressions are important to
describe the regression model.

Multiple linear regression and other classical linear
methods have been compared to CYP problem
(Sudduth et al., 1996; Drummond et al., 2003; Fortin
et al., 2011). In contrast to previous works, this paper
builds the MLR models using the best attribute subset,
which improves the models’ predictive accuracy.

Regression trees

MLR generates global models; there is a single
predictive formula holding over the entire samples
space. A regression tree uses an alternative approach,
splitting recursively the samples’ space in small
regions until each region is small enough to be
represented by a simple model (Quinlan, 1992). The
first node in the tree is named the root node, which
does not have incoming edges. All other nodes have
exactly one incoming edge. A node with outgoing
edges is called a test node and a node without outgoing
edges is called a leaf node. Each test node splits the
samples’ space into two or more subspaces based on a
set of conditions of the input attributes values.
Conditions to splitting the samples are based on an
impurity measure (such as the standard deviation or
the Gini-Index). The leaf nodes assign a numerical
value to the last partition of samples. Thus, new
samples are evaluated by navigating them from the root
of the tree down to a leaf, according to the outcome of
the tests along the path. A sample regression tree is
shown in Fig. 2a. The most common algorithms to
build regression trees are: CART (Breiman et al.,
1984), M5 (Quinlan, 1992), and M5-Prime (Wang &
Witten, 1997). Tree construction procedure (Fig. 2b)
is similar for all these algorithms, introducing some
differences in three main aspects: 1) the impurity
measure on continuous attributes, 2) the prune rule and
3) the leaf value determination mechanism. Standard
deviation reduction (SDR) is applied as impurity
criterion in M5, instead of variance as used in CART.
M5 has some particular characteristics for regression
such as: a) it is able to handle linear models at leaf

Y X+ + ∈β

β = ( )−X X X YT T1

Y B X
i j ij i

j

k

= + ∈
=

∑
1
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nodes instead of constant values; b) it can introduce a
smoothing procedure to obtain better predictions
(Quinlan, 1992). In addition, trees generated with M5
are smaller than those generated with CART. For these
reasons, M5 overcomes CART algorithm in accuracy
and simplicity (Uysal & Altay, 1999). M5-Prime is a
“rational reconstruction” of M5. The former surpasses
the performance of the latter by introducing a method
for dealing with missing values and enumerated
attributes (Wang & Witten, 1997). Despite these
advantages, there are few M5-Prime applications for
predicting crop yields. Thus, M5-Prime was selected
over other algorithms in this work, being compared in
accuracy with other regression techniques to CYP
problem. The M5-Prime implementation in Weka
(Witten et al., 1999) was used (Fig. 2b). The parameters
to create regression trees without pruning and with a
minimum of two samples in each leaf node were
selected.

Artificial neural networks

Artificial neural networks (ANN) try to simulate the
information processing capabilities of nervous systems
(Rojas, 1996). As an analogy of the biological systems,

an ANN is a group of simple processing units linked
by weighted interconnections. Each processing unit
has a certain number of inputs from the outer or from
other processing units. Inputs are calibrated using the
weights of its corresponding interconnections. Once
calibrated, inputs are combined and transmitted to
other processing units via the appropriate weighted
interconnections. This process can be represented
mathematically by a function that maps the set of
inputs to a set of outputs. Commonly, the function
obtained is non-additive and nonlinear. The iterative
process performed to pound connections is called
“training”, which is guided for some error measure.
There are several structures for build ANN, each one
with a suitable group of training algorithms. One of
the most popular structure-training algorithm
combinations is the multilayer perceptron (MLP) and
the back-propagation algorithm (Rumelhart et al.,
1986). The back-propagation minimizes the error in
weight space using the gradient descent method. This
method requires an iterative computation of the
gradient of the error function. In addition, the method
requires an activation function, where the sigmoidal
function [1 / (1 + e–cx)] is the most commonly used.
The MLP and back-propagation algorithms have been
a popular choice to implement neural networks for crop

M5-Prime(examples) {
SD=sd(examples)
for each k-valued enumarated attribute 

convert into k-1 synthetic binary 
attributes

root=new_node
root. Examples=examples
split(root)
prune(root)
print_tree(root)

}
split(node) {

if sizeof(node.examples)<4 or
sd(node.examples)<0.05*SD

node.type=LEAF
else

node.type=INTERIOR
for each continuos and binary attribute

for all possible split positions
calculate the attribute's SDR

node.attribute=attribute with max SDR
split(node.left)
split(node.right)

}

prune(node) {
if node=INTERIOR

prune(node.left_child)
prune(nod.right_child)
node.model=linear_regression(node)

if subtree_error(node)>error(node) then
node.type=LEAF

}
subtree_error(node) {

l=node.left;
r=node.right;
if node=INTERIOR then

return (sizeof(l.examples)*
subtree_error(l)+sizeof(r.examples)* 

subtree error(r)/
sizeof(node.examples))

else
return error(node)

}

Sowed
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>52.185≤52.185

>120.95≤120.95

>9.55≤9.55

>20.925≤20.925

Irrigation
water
depth

Yield =
12.764
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a) b)

Figure 2. a) A sample regression tree (Frausto-Solís et al., 2009); b) pseudo-code for the M5-Prime algorithm (Wang & Witten,
1997).
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yield prediction (Liu et al., 2001; Drummond et al.,
2003; Safa et al., 2004), for which this model is also
used in the present work.

For MLP, the number of neurons in each layer
defines the network topology; it strongly affects the
network prediction accuracy. Regrettably, an automatic
method to determine a suitable topology using the
number of inputs and outputs is not available.
Therefore, the quantity of neurons and hidden layers
are commonly established by experimentation. In this
sense, a topology based on previous works was selected
(Sudduth et al., 1998; Irmak et al., 2006). A fully
interconnected three-layered network with five neurons
in one single hidden layer was used. Most
recommended parameters were applied, such as the
weight decay and numeric attribute normalization (Liu
et al., 2001; Drummond et al., 2003). Training epochs,
learning rate and the momentum were established by
experimentation, being 500, 0.3, and 0.01 respectively.
Quantity of neurons at the input layer depends on the
number of attributes selected, while the output layer
has only a neuron, the crop yield estimation.

Support vector regression

Support vector regression (SVR) technique is a
classif ication method that arises from a nonlinear
generalization of the Generalized Portrait algorithm
developed by Vapnik & Lerner (1963). On its simplest
form, the goal of the support vector technique is to
obtain a linear function f(x) = <w,x> + b with w ∈ RN

and b ∈ R for a given training set {(x1,y1),...,(xm,ym)}.
That function f(x) should have at most one ε deviation
from the current obtained targets yi at the time that is
as flat as possible (Smola & Schölkopf, 2004). Flatness
can be obtained by a small value of w. Thus, the
problem can be written as (Vapnik et al., 1997):

[4]

where ξi and ξi
* are slack variables introduced to deal

with infeasible constraints, and C is called the
regularization parameter; C determine the quantity of
deviations larger than ε that are accepted. In most of

the cases, problem [1] can be easily solved in its dual
formulation (Smola & Schölkopf, 2004):

Subject to: [5]

where K(xi,xj) is known as the kernel function, which
allows to project the original data into a higher-
dimensional space to be linearly separable (Ruß, 2009).
The most common kernel functions are the radial basis
[6] and the polynomial [7]. To obtain good predictions,
the parameters s and r of Eqs. [6] and [7] and the
parameter C in Eqs. [4] and [5] should be tuned.
Regrettably, there is no automatized method to f ind
such optimal values. Thus, these parameters are
commonly established by a trial and error procedure.

[6]

[7]

This work uses the SVR implemented in Weka,
which applies an improved version of the sequential
minimal optimization (SMO) learning algorithm
(Shevade et al., 2000). The selected kernel was
polynomial (Eq. [7]), with a r value of 1. The C
parameter was also assigned to 1 and was used for all
the SVR models. Other values were also tested, such
as those utilized in Ruß (2009), with non-favorable
results.

k-Nearest neighbor

The k-Nearest neighbor (kNN) method classifies a
new object with input vector y examining the k closest
training dataset points to y, assigning the object to the
class that has the majority of points among these k
(Hand et al., 2001). In the case of regression, the
response value is calculated as a weighted sum of the
responses of all the k neighbors, where the weight is
inversely proportional to the distance —generally
normalized Euclidean— from the input record. The
most basic form takes k = 1. However, this makes a
prediction model rather unstable (high variance,
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sensitive to data). Increasing k reduces the variance,
but may increase the bias. Thus, the algorithm is
sensitive to a proper selection of k.

The nearest neighbor method has several attractive
properties. Beyond the choice of k and the distance
metric, no optimization or training is required (Hand
et al., 2001). Also, the method is able to take full
advantage of local information and form highly
nonlinear, highly adaptive decision boundaries. Their
disadvantages are the high computational cost in time
and memory, since all the available data points
(samples) should be scanned to f ind the nearest
neighbors. The distance calculation becomes more
difficult as the training dataset dimension increases.
However, the method is popular due to its ease of
implementation and the above-mentioned properties.

The kNN technique has been used to study the crops
behavior, as it is shown in Zhang et al. (2010).
Nevertheless, very few comparisons of kNN against
other machine learning methods applied to CYP have
been made. This work applies a kNN algorithm to
predict the yield of ten crops, and the results are
compared against MLR, ANN, SVR, and M5-Prime
regression trees. A k value of 5 and the Euclidean
distance were used as parameters for this technique.

Accuracy metrics

Four of the most common accuracy metrics of
regression models were used: root mean square error
(RMSE), root relative square error (RRSE), correlation
coefficient (R) and the relative mean absolute error
(MAE). Table 3 shows how these metrics are estimated
(Han & Kamber, 2006). The RMSE measures the
difference between the actual and estimates,
exaggerating the presence of outliers (Han & Kamber,
2006). RMSE has been used to measure the
performance of CYP models in previous works, such
as Liu et al. (2001) or Drummond et al. (2003). In
addition, this work applies the RRSE, which compares
the model prediction against the mean. For this metric,
a value below 100% indicates a better performance
than the average. Thus, RRSE is easy to read by people
unaccustomed to crop yield dimensions. Correlation
coefficient (R) is also included, which measures the
linear relationship between regression model
predictions and the real values. MAE is the average of
differences in estimations (in physical units). Because
yield proportions are different among the crops, this

metric is expressed as a percentage relative to the mean
yield.

Evaluation method

Machine learning algorithms work with different
heuristic or principles, being able to be influenced by
different kinds of relationships on data (Kohavi, 1995).
To ensure fairer conditions in evaluation, this work
finds the best attribute subset (BAS) for each technique
under analysis. The best subset is determined by using
only the training dataset. To f ind the BAS, a
combinatorial procedure enumerates and evaluates all
the possible subsets {x1, x2, x3…xm}, where a xk

represents an unique combination of attributes
obtained from the potential set of attributes
{a1, a2,..., an} presented in Table 2. To evaluate each xk

subset, the training dataset conformed by the range of
the years [a,b] is divided into two datasets; the former
with samples from the range [a,b – 1], and the second
with samples from the year b. The first dataset is used
to build a model with each xk subset, while the other
dataset is used to evaluate the models. The evaluation
is performed according the holdout validation

Table 3. Performance metrics (y = real value, ŷ = yield
estimation, i = observation, y–, ŷ

–
= means)
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RMSE: root mean square error. RRSE: root relative square error.
R: correlation coefficient. MAE: mean absolute error
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technique (Han & Kamber, 2006) and the metrics
described in material and methods section. The best
attribute subset obtained from the training dataset is
used for predicting yield on samples of testing dataset,
which is composed with samples of b + 1 year. Fig. 3
provides a pseudo-code of the evaluation process. This
process was applied twice, once for 1999-2004 and
other for 1999-2005 training periods. Thus, each
obtained BAS by technique was tested with 2005 and
2006 samples. The results were averaged and are shown
in the next section.

As mentioned above, evaluation method in Fig. 3
uses the hold-out evaluation technique. This validation
technique was selected by its implementation
simplicity and low computational cost. These features
fit well to the combinatorial procedure employed to
test each attribute combination. Previous works related
to CYP comparisons have been applied Cross-
Validation (CV) technique (Drummond et al., 2003;
Ruß, 2009; Ruß & Kruse, 2010). Nevertheless, some
disadvantages of CV make it diff icult to use in our
evaluation scheme: a) the proper selection of the
number of folds (k), to maintain the problem

computationally tractable (Drummond et al., 2003),
and b) the lack of consistency of a model selected by
CV (Yang, 2008).

Results

As was mentioned before, the model comparison is
made using four performance metrics. Table 4 shows
the results for the RMSE and RRSE metrics for all
evaluated techniques in all the crop datasets. Average
RMSE and RRSE for each technique are shown at the
bottom of Table 4. Average RMSE shows that kNN has
the lowest mean error, followed closely by SVR and
M5-Prime. Instead, there are a little differences with
RRSE, placing M5-Prime f irst, followed closely by
kNN and SVR. ANN has the highest mean error for
both metrics. Table 4 shows in bold the best result per
crop dataset. An individual counting per technique of
such results indicates that M5-Prime achieves the
largest quantity of models with the lowest RMSE and
RRSE models [5] and [6], followed by kNN with four
models in both metrics. ANN has one best model with

Figure 3. Procedure to evaluate the algorithms.

// Procedure to evaluate the regression techniques with all the crop datasets
// listOfCropDS: A list of crop datasets identifiers
// potAttr: The set of potential attributes.
// algorithms: A list of algorithms (MLR, M5-Prime, ANN, kNN, SVR)
// firstTrainYear: First year in training dataset
// lastTrainYear: Last year in training dataset
// testYear: The year of the samples used for testing (commonly lastTrainYear + 1)

procedure evalAlgorithms(listOfCropDS, potAttr, algorithms, firstTrainYear, lastTrainYear, testYear) {
for i=0 to 15
begin

for j=0 to 5
begin

// obtain samples for training
trainSamples=GetSamples(listOfCropDS [i], firstTrainYear,lastTrainYear)
// obtain the BAS for trainSamples using the algorithm in turn
BAS=findBestAttrSubset(trainSamples, potAttr, algorithms[j], firstTrainYear, lastTrainYear)
// obtain samples for testing
testSamples=GetSamples(CropDS [i], testYear,testYear)
// makes a model with the algorithm in turn, using trainSamples and
// the best attribute subset
model=makeRegressionModel(algorithms[i], trainSamples, BAS)
// evaluates a regression model using testSamples
errorMeasures=evalModel(model,testSamples)
saveResults(CropDS [i],algorithms[j], errorMeasures)

end
end

}
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RMSE metric, while SVR and MLR do not have any
model that improves overall anyone metric. However,
the average performance of SVR is better than ANN,
MLR in both metrics.

Table 5 shows the correlation factor (R) between
real and estimated yield obtained per technique for all
the modeled crop datasets. Average results of R (at the
bottom of Table 6) shows that M5-Prime has the
highest mean R value (0.42), followed by kNN (0.41),
SVR (0.31), MLR (0.25), and ANN (0.21) respectively.
Notice that M5-Prime is the only technique with all its
R results positive. An individual counting of best

results by crop dataset per each technique (highlighted
in bold in Table 6) shows that M5-Prime obtains the
largest quantity of best correlated models (seven
models), followed by kNN with three models. Besides,
ANN, SVR, and MLR never achieved the best place.

The MAE (%) metric is also included at the left side
of Table 5. The average value (at the bottom-left side
of the table) indicates that kNN has the lowest mean
error (18.12%), followed closely by M5-Prime
(19.42%). All the other techniques have an average
error above of 20.29%. ANN presents the highest
average error (21.99%). A counting of the best results

Table 4. Root mean square error (RMSE) and root relative square error (RRSE) metrics results for all the evaluated techniques.
The first column shows the dataset identifier. The best result for each dataset and technique is shown in bold

Crop RMSE (%)
�

RRSE (%)
dataset 

ID MLR ANN M5-Prime kNN SVR MLR ANN M5-Prime kNN SVR

CD01 9.64 9.67 8.54 9.38 8.83 90.59 90.44 80.62 91.00 83.39
CD02 0.25 0.26 0.26 0.23 0.26 76.71 77.23 78.42 70.48 77.82
CD03 0.49 0.47 0.50 0.64 0.50 66.05 65.34 63.79 84.32 66.91
CD04 1.07 1.09 0.97 1.05 1.09 93.18 95.02 83.08 92.12 96.41
CD05 1.28 1.26 1.25 1.37 1.29 85.71 84.76 83.73 91.62 86.21
CD06 4.45 4.54 3.97 4.36 4.20 92.84 95.19 82.06 90.06 84.97
CD07 5.32 5.29 4.97 4.40 4.91 83.68 82.99 76.96 64.27 76.00
CD08 15.80 16.03 16.20 12.87 13.16 83.97 85.32 86.49 68.91 70.34
CD09 10.10 11.77 10.03 10.54 10.30 82.24 94.20 80.75 84.23 83.43
CD10 5.66 5.61 4.70 4.26 5.61 96.44 95.56 79.89 71.97 95.67

Average 5.41 5.60 5.14 4.91 5.02 84.54 86.18 79.46 79.78 81.97

MLR: multiple linear regression. ANN: artificial neural network. kNN: k-nearest neighbor. SVR: support vector regression.

Table 5. Correlation factor (R) and mean absolute error (MAE) metric results for all the evaluated techniques. The first
column shows the dataset identifier. The best result for each dataset is shown in bold

Crop R
�

MAE (%)
dataset 

ID MLR ANN M5-Prime kNN SVR MLR ANN M5-Prime kNN SVR

CD01 0.27 0.43 0.65 0.55 0.54 25.30 27.04 22.18 23.95 22.37
CD02 0.29 0.35 0.23 0.60 0.29 9.07 9.13 9.37 6.71 8.94
CD03 0.65 0.63 0.71 0.35 0.63 16.76 16.15 16.24 22.84 17.27
CD04 0.11 0.15 0.37 0.33 0.14 24.99 25.02 21.40 22.91 25.54
CD05 0.15 0.15 0.22 0.15 0.10 8.24 8.00 7.85 9.21 8.40
CD06 0.25 0.31 0.40 0.00 0.30 12.57 12.90 9.76 10.43 10.41
CD07 0.03 –0.06 0.40 0.37 0.35 13.07 14.06 13.48 9.97 12.15
CD08 0.38 0.54 0.44 0.72 0.66 44.37 45.88 39.76 35.33 34.80
CD09 0.40 0.03 0.45 0.39 0.33 19.04 21.77 17.57 16.61 18.74
CD10 –0.05 –0.18 0.54 0.74 –0.04 46.54 44.97 39.35 29.06 46.33

Average 0.25 0.21 0.42 0.41 0.31 21.63 21.99 19.42 18.12 20.29

MLR: multiple linear regression. ANN: artificial neural network. kNN: k-nearest neighbor. SVR: support vector regression.
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Table 6. Attributes selected by evaluation method for each crop dataset and evaluated technique. A
cell value of 1 indicates that attribute at such column header is selected for 2005 year. A value of 2
indicates that attribute is selected for 2006 year. A value of 3 indicates that attribute was selected for
both years. A zero value indicates that such attribute was not included in any attribute set

Crop 
Technique1

Attribute2

dataset ID PA IWD SR RF MaxT AvgT MinT SDC

CD01 MLR 0 0 3 0 1 1 1 1
ANN 0 3 2 2 0 0 0 1
M5-Prime 1 3 0 2 1 2 3 1
kNN 0 2 2 2 0 1 3 0
SVR 2 3 2 1 0 2 2 1

CD02 MLR 0 0 1 3 1 0 1 2
ANN 2 0 1 0 3 0 1 0
M5-Prime 2 0 3 1 1 0 1 2
kNN 2 3 2 2 2 3 3 3
SVR 2 0 3 1 3 2 1 0

CD03 MLR 3 3 3 0 3 3 2 0
ANN 3 3 3 0 0 0 2 0
M5-Prime 2 3 3 0 2 0 0 0
kNN 2 0 2 3 1 3 1 3
SVR 3 3 1 0 1 2 2 0

CD04 MLR 0 0 1 2 3 3 2 0
ANN 3 3 3 2 1 0 0 0
M5-Prime 3 0 1 0 0 0 0 1
kNN 1 2 2 2 2 2 2 3
SVR 0 2 3 2 1 1 2 0

CD05 MLR 3 0 1 2 1 1 3 0
ANN 1 0 1 3 1 1 2 1
M5-Prime 0 0 1 0 1 2 1 0
kNN 0 0 0 0 1 1 0 2
SVR 3 3 1 1 1 1 3 2

CD06 MLR 0 0 1 0 0 1 1 3
ANN 0 2 1 0 0 0 0 3
M5-Prime 2 2 1 1 1 2 1 3
kNN 0 0 0 1 0 0 1 3
SVR 1 2 2 3 3 2 2 3

CD07 MLR 0 0 1 2 1 1 0 2
ANN 0 1 1 3 2 0 0 3
M5-Prime 2 1 1 2 2 3 1 0
kNN 1 1 0 2 0 0 2 3
SVR 3 1 1 2 1 3 2 0

CD08 MLR 2 0 0 0 0 3 0 0
ANN 3 0 0 0 2 0 2 1
M5-Prime 3 2 1 1 2 0 2 0
kNN 2 2 1 3 1 1 0 3
SVR 3 0 0 0 1 0 1 1

CD09 MLR 0 0 2 1 2 3 1 0
ANN 1 0 2 3 2 1 3 1
M5-Prime 1 0 1 1 3 1 1 0
kNN 1 2 0 0 2 1 1 0
SVR 0 0 2 1 1 0 1 1
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by crop dataset for each technique indicates that kNN
and M5-Prime have the largest quantity of models with
the lowest errors (four models each one). Both ANN
and SVR obtain only one model with the lowest MAE.
Individually, MLR never overcomes the other
techniques using the MAE metric.

The RMSE, RRSE, R and MAE metrics are useful
to measure individual aspects of models’ accuracy. For
this reason, it is unfair to use only one of them to
indicate which technique is most suitable for massive
crop yield prediction. For example, consider the
average RMSE in the last row in Table 4, which
indicates that kNN is the best algorithm. However,
mean RRSE in this same row indicates that M5-Prime
performs better. RMSE is measured in physical
dimensions and is more susceptible to be biased with
high values when it is use to compare errors in crop
datasets with different yield ranges. In contrast, RRSE
is measured against the mean, expressed as percentage
deviation. Thus, this last metric would be more suitable
to select the most accurate algorithm. In this work, we
apply a f ilter for obtaining the algorithm which
achieves the higher quantity of models with the lowest
RMSE, RRSE, and MAE errors, and also the highest
R values (shown in bold in Tables 4 and 5). In this
individual count, M5-Prime obtains four best models,
while kNN only two.

An interesting aspect of this research is to compare
the best attribute set (BAS) found for each technique.
As is explained in the evaluation method section, two
BAS were obtained by technique, one per each
evaluated year. These attribute sets are shown in
Table 6. The best attribute sets are shown separately

by crop dataset, because attributes influencing each
crop yield are different. A first issue that can be pointed
out is the lack of consistency among the BAS selected
by technique. Table 6 reveals that majority of numbers
are 1 or 2, indicating that BAS usually changes from
one year to another in the majority of crop datasets.
Not even the techniques that present the best
predictions and the closest results show signif icant
coincidences (M5-Prime and kNN). This is easier to
see in Table 7, where attributes appearing in BAS of
2005 and 2006 for all crop datasets are accumulated.
Only AvgT and SDC attributes were repeatedly
selected in more than five crop datasets for MLR and
kNN techniques. There are no evidence to show
preference of a technique to always include a particular
attribute in the BAS. Thus, consistency in BAS is more
related to the crop datasets than the specified applied
algorithm. Consider for example results from CD03
and CD10 in Table 6, where the former presents a
tendency to include PA, IWD and SR attributes almost
independently of technique, while the second do not
repeat an attribute in more than one algorithm. CD06
for instance, includes SDC attribute for all the
evaluated techniques.

Discussion

Several evaluations of ML methods applied to CYP
have been made in the literature, each one with
different researching purposes. Some works measure
the ML performance using a particular attribute set
(Liu et al., 2001; Safa et al., 2004; Marinković et al.,

Table 6 (cont.). Attributes selected by evaluation method for each crop dataset and evaluated technique.
A cell value of 1 indicates that attribute at such column header is selected for 2005 year. A value of 2
indicates that attribute is selected for 2006 year. A value of 3 indicates that attribute was selected for
both years. A zero value indicates that such attribute was not included in any attribute set 

Crop 
Technique1

Attribute2

dataset ID PA IWD SR RF MaxT AvgT MinT SDC

CD10 MLR 0 0 0 2 2 3 2 0
ANN 1 0 1 2 0 1 2 2
M5-Prime 3 0 0 0 0 1 2 0
kNN 2 2 0 2 0 2 3 0
SVR 1 0 0 0 2 2 0 0

1 Evaluated techniques were multiple linear regression (MLR), artificial neural network (ANN), M5-Prime,
k-nearest neighbor (kNN) and support vector regression (SVR). 2 The attributes considered were planting
area (PA), irrigation water depth (IWD), solar radiation (SR), rainfall (RF), maximum temperature (MaxT),
average temperature (AvgT), minimum temperature (MinT) and season-duration cultivar (SDC).
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2009); some others compare a ML technique against
classical statistical methods (Drummond et al., 2003)
or other ML methods (Ruß, 2009; Ruß & Kruse, 2010).
However, in these works, research is commonly limited
to one or two crops, and their results are hard to
extrapolate to other crops or fields (Liu et al., 2001).
The crops are commonly selected by its economic
importance, or by some particular scientific interest.
Nevertheless, the agricultural planning process
requires a yield estimation of several crops, and not
only most economically productive. In this sense, ten
crops were selected for this work using the data
availability as the main criterion. Thus, a crop was
selected when enough data samples appeared in the
range of years under analysis.

Commonly, comparisons of regression methods
apply the same attribute set for all the evaluated
techniques. This could bias the results in favor of some
techniques, because ML methods respond differently
depending on the utilized attribute set (Kohavi, 1995).
The work presented in this paper applies an exhaustive
method to f ind the best attribute subset for each
technique, starting from a potential set of attributes
(surface, irrigated water, solar radiation and minimal,
maximal and average temperatures). This approach is
allowed only for datasets with a low quantity of
attributes. However, some CYP datasets have relatively
few attributes and an exhaustive approach can be
applied for model comparison purposes (Ruß & Kruse,
2010). In addition, a bigger number of real cases can
be addressed each time a new computer generation
arises.

Evaluating regression techniques requires
performance metrics. The R and the RMSE are the
most commonly used metrics (Drummond et al.,
2003). As an average, RMSE is dominated by its large
individual terms. For this reason, in this work, the
RRSE was also considered. Unlike metrics that are
measured in physical units, RRSE provides a reference
point, being easy to understand by people not related
to agricultural forecasting metrics. This reasoning was
also applied to MAE metric, which is expressed in
percentage respect to the mean.

The evaluated techniques were ranked, from the best
to the worst, according to RMSE, RRSE, R, and MAE
results, in the following order: M5-Prime, kNN, SVR,
ANN and MLR. An evaluation described by Ruß
(2009) ranked M5-Prime in the last position, below
multi-layer perceptron and the SVR techniques. These
discrepancies can be due to: a) the attribute set of Ruß
(2009) containing only soil features (fertilizers,
vegetation and electric conductivity) and b) the
regression trees parameter values related to the
samples of leaf nodes and pruning procedure are
different. The SVR parameters used in Ru (2009) were
tested using our data with very bad results. Regrettably,
Ruß (2009) did not report the number and species of
crops, and a fair comparison is difficult.

ANN have reported a better performance than
classical statistical methods (Drummond et al., 2003)
and regression trees (Ruß, 2009; Ruß & Kruse, 2010).
However, ANN obtained a poor performance in our
work; their average values for RMSE and MAE were
the highest, while for R were the lowest. The

Table 7. Number of times that attributes are selected by evaluation method in 2005 and 2006
for all the crop datasets

Technique1
Attribute2

PA IWD SR RF MaxT AvgT MinT SDC

MLR 2 1 2 1 2 5 1 1
ANN 3 3 2 3 1 0 1 2
M5-Prime 3 2 2 0 1 1 1 1
kNN 0 1 0 2 0 2 3 6
SVR 4 2 2 1 2 1 1 1

Total 10 9 8 7 4 9 7 11

1 Evaluated techniques were multiple linear regression (MLR), artificial neural network (ANN), M5-
Prime, k-nearest neighbor (kNN) and support vector regression (SVR). 2 The attributes considered
were planting area (PA), irrigation water depth (IWD), solar radiation (SR), rainfall (RF), maximum
temperature (MaxT), average temperature (AvgT), minimum temperature (MinT) and season-duration
cultivar (SDC).
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performance of neural networks depends on several
factors, such as the network structure, training
parameters and samples’ quality. Nevertheless, an
important difference between our work and the
previous ones is that we did not include any attributes
to identify the crop field. This is because: a) the fields
are not always cultivated or their crops are not always
the same and b) the agricultural planning is made at
the global level in our study case. Our results are
according to a previous conclusion that site-
dependency of ANNs makes difficult to obtain good
performance when field identification is missing (Liu
et al., 2001). In addition, it should be considered that
the same structure for all the developed ANN models
was used. To develop a different ANN structure for
each crop is impractical due the number of crops and
the training time required. This practice does not
follow the ANNs’ experimental nature, which requires
several trials to obtain a good predictor model.

As mentioned before, kNN technique provides
comparable average results than M5-Prime. In our
rank, only the individual counting of the best CYP
models by technique places kNN below M5-Prime.
Thus, this technique deserves further research to
explore their potential in agricultural planning.

The average measures of MLR models are between
ANN and SVR mean results. However, individually
none of the MLR models’ results surpass any other of
the remaining techniques. This situation occurs with
all the error metrics implemented. Despite the
unfairness of the comparison (after all, only one linear
technique versus four non-linear techniques are
compared), the general assumption is that ML
techniques are more suitable to extract complex
relationships from data than MLR.

As it can be seen in Table 4 and Table 5, M5-Prime
achieves the largest number of models with the lowest
RMSE and RRSE and the highest R. In practice, each
crop has a different economic profit, and a modeling
technique that maximizes the number of accurate
models is important. Therefore, M5-Prime is selected
as a very suitable modeling tool for massive CYP. A
second choice is kNN, for their good obtained results.

However, in a strict sense, in the group of evaluation
techniques, none of them exceeds the entire set.
Although M5-Prime and kNN achieve mostly the
models with the lowest errors, SVR and ANN
techniques obtain some good models as well. Thus, for
maximizing the CYP efficiency, a combination of ML
models can be the best strategy for agricultural

planning. Further research is to develop an integrated
framework for selecting the most appropriate
regression technique for each crop dataset.

As final conclusions, we have that the best attribute
set obtained from each training dataset varies a lot from
one year to another, once new data are incorporated.
Thus, is difficult to establish a constant set of attributes
that guarantee good results all the time for all
techniques, although this issue is variable for crop
dataset. In our experiment, only two datasets (CD03,
CD06) show some tendency to include repeatedly the
same attributes for all techniques. Related with this,
is the fact that some crop datasets may be very difficult
to model for any regression technique. The individual
count applied to obtain the models with all the lowest
errors shows that some crop datasets do not meet any
model that accomplishes these criteria. This is the case
for the CD03, CD07, CD08 and CD09 datasets. The
most likely reason for that is the natural complexity of
the crop-cultivar yield behavior, which is not reflected
by the attributes used. Proper information of the
agricultural area can help to test this assumption,
proposing a different set of attributes with these crop-
cultivars.

Also, it should be considered that ensuring a fair
comparison for evaluating all the ML techniques is
difficult. The evaluation method utilized considers the
fact that a different set of attributes changes the
performance of ML models. Nevertheless, the same
conf iguration for each ML technique is used to
generate all its models. Most of the parameter values
were taken from the literature. Evidently, some
techniques are more experimental than others, and such
treatment can be inequitable for some methods. Further
research will focus on trying an extensive number of
configurations and parameter values for all the ML
techniques. This “massive calibration of models”
should be reproducible for practical agricultural
planning cases.

Finally, it is necessary to point out that this work
deals only with comparing the predictive accuracy of
the above-mentioned techniques. Machine learning
techniques are complex, and several factors are related
with their performance measuring. Some examples of
these factors are the model structure, knowledge
representation, implementation cost, missing data
handling and training time. Further research will be
dedicated to compare these characteristics of ML
algorithms and their compatibility with agricultural
planning.
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