

USING THE EPANET
TOOLKIT v2.00.12 WITH

DIFFERENT PROGRAMMING
ENVIRONMENTS

Oscar Tomas Vegas Niño
Fernando Martínez Alzamora
Joan Carles Alonso Campos

Velitchko G. Tzatchkov

2018

Editorial coordination:
José Manuel Rodríguez Varela
Gema Alin Martínez Ocampo
Urban Hydraulics Department
Mexican Institute of Water Technology

Design and layout:
Gema Alín Martínez Ocampo

English translation:
Dante Cuevas Navarrete

First edition in English: 2018

Mexican Institute of Water Technology
Paseo Cuauhnáhuac 8532
62550 Progreso, Jiutepec, Morelos
Mexico
www.imta.gob.mx

ISBN: 978-607-9368-97-5 (digital work)

The opinions, information and cited works presented in this work are the sole responsibility
of the authors and do not necessarily reflect the points of view of the editing institution.

Partial or total reproduction of this work by any medium, mechanical, electronic, photocopy,
thermic or others is strictly prohibited without the expressed written consent of the editors.

Made in Mexico

627.0113	 Vegas Niño, Oscar Tomas
V15	 Using the Epanet toolkit v2.00.12 with different programming environments /

Oscar Tomas Vegas Niño et al.. -- Jiutepec, Mor. : Mexican Institute of Water
Technology, 2018.

	 119 p.

	 ISBN:	 978-607-9368-97-5 (digital work)

	 1. Computer Programs 2. Hydraulic Simulation

Authors:
Oscar Tomas Vegas Niño
Fernando Martínez Alzamora
Joan Carles Alonso Campos
Velitchko G. Tzatchkov

C o n t e n i d o

PRESENTATION	 9
PROLOGUE	 11
1.	 Epanet Software	 13
	 1.1.	What is Epanet?	 13
	 1.2.	Physical and non-physical components 	 14
	 1.3.	What can be done on Epanet?	 15
	 1.4.	Application limitations	 15
	 1.5.	Installing Epanet on 32/64-bit Windows 	 16
	 1.6.	User list	 17
2.	 Epanet data structure	 19
	 2.1.	Sections that make up the input file	 19
	 2.2.	Main sections for drawing a network	 20
3.	 The Epanet Toolkit 	 23
	 3.1.	Epanet’s API 	 23
	 3.2.	API functions	 26
4.	 Connecting Epanet’s API to programming environments	 31
	 4.1.	Visual Basic 6.0 (Basic 6.0)	 32
	 4.2.	Visual Studio 2017 (Visual Basic .NET)	 40
	 4.3.	Matlab (technical computing language)	 47
	 4.4.	Visual Studio 2017 (C#)	 57
	 4.5.	Python Shell (Python)	 66
	 4.6.	Dev-C++ (C++)	 78
	 4.7.	Microsoft Office Excel 2016 (VBA)	 86
5.	 Practical Exercises	 99
ABOUT THE AUTHORS	 118

T a b l e s

Table 2.1. 	 Keywords for the different sections of the input file	 19
Table 3.1. 	 Description of the files that make up the Epanet Toolkit	 24
Table 3.2. 	 Epanet Toolkit functions by task	 26
Table 4.1. 	 Controls added to the main form (Visual Basic)	 37
Table 4.2. 	 Controls added to the main form (Visual Basic.NET)	 46
Table 4.3. 	 Files and folders contained in the zipped file
				 EPANET-Matlab-Toolkit-master.zip	 51
Table 4.4. 	 Controls added to the main form	 64
Table 5.1. 	 Keywords to retrieve values after a simulation	 112

F i g u r e s

Figure 1.1. 	 List of Epanet files on the EPA website	 14
Figure 3.1. 	 Files that make up the Epanet Toolkit	 24
Figure 3.2. 	 Online help with the Epanet Toolkit for programmers	 29
Figure 4.1. 	 Loading the epanet2.bas file into a project	 34
Figure 4.2. 	 Name changes to the project name and form	 35
Figure 4.3. 	 Files saved in the projects folder VB6.0	 35
Figure 4.4. 	 CommonDialog Control added to the VB6.0 Toolkit	 36
Figure 4.5. 	 Form in design and run time modes	 37
Figure 4.6. 	 Source code associated to the CmdAccept button	 38
Figure 4.7. 	 Result from consulting number of links and nodes
				 in the Net3 network	 39
Figure 4.8. 	 Number of nodes and links in the Net3 network using Epanet	 39
Figure 4.9. 	 Creating a new project in Visual Studio 2017	 41
Figure 4.10. 	 Declaration of the data types, variables
				 and functions on VB6.0 and VB.NET	 42
Figure 4.11. 	 Epanet2.vb module added to project 	 42
Figure 4.12. 	 Viewing the bin and obj folders on the VB.NET
				 solution explorer 	 43
Figure 4.13. 	 Copying the epanet2.dll file to the Debug folder	 44
Figure 4.14. 	 Visual Basic 2017 toolkit	 45
Figure 4.15. 	 Part of the source code and main form in run time mode	 47
Figure 4.16. 	 Downloading the Epanet Toolkit for Matlab	 50
Figure 4.17. 	 Folders and files our project will have	 50
Figure 4.18. 	 Required files for using the Epanet Toolkit with Matlab	 52
Figure 4.19. 	 Steps for selecting the current work folder in Matlab	 53
Figure 4.20. 	 Project folder ready for working with the Epanet Toolkit	 54
Figure 4.21. 	 Error message for not finding the 64bit folder in the project
				 folder	 55
Figure 4.22. 	 Creating a new script in Matlab	 56
Figure 4.23. 	 Results shown after running the script	 57
Figure 4.24. 	 Creating a new project and solution with Visual Studio 2017	 59
Figure 4.25. 	 Copying the EpanetCSSharpLibrary class to the project folder	 61
Figure 4.26. 	 Adding the EpanetCSSharpLibrary class using Visual
				 Studio 2017	 61

Figure 4.27. 	 Viewing the bin y obj folders with the solution explorer	 62
Figure 4.28. 	 Copying the epanet2.dll file in the Debug folder	 63
Figure 4.29. 	 Visual Studio 2017 (C#) Toolkit	 64
Figure 4.30. 	 Running Visual Studio 2017 (C#) and results	 66
Figure 4.31. 	 Download link for Python 3.3 from the official webpage	 68
Figure 4.32. 	 Installing Python 3.3	 69
Figure 4.33. 	 Python Shell tool in Python 3.3	 69
Figure 4.34. 	 Searching for the Epanet2 0.4.0.1dev installer	 70
Figure 4.35. 	 Result of the Epanet2 0.4.0.1dev installer search	 71
Figure 4.36. 	 Downloading the “Epanet2 0.4.0.1 dev” installer	 71
Figure 4.37. 	 Verifying the Python 3.3 directory in the installation process	 72
Figure 4.38. 	 Installing the epanet2 package, EPANET2-0.4.0.1dev
				 and _epanet2	 72
Figure 4.39. 	 “epanet2” package and “epanet2” module	 73
Figure 4.40. 	 Importing the epanet2.py module	 73
Figure 4.41. 	 Result of consulting the Net3.inp file using Python Shell	 74
Figure 4.42. 	 Source code (Python Language) written using NotePad++	 75
Figure 4.43. 	 Copying the ScriptEpanetToolkit.py file to the site-packages
				 folder	 76
Figure 4.44. 	 Importing the ScriptEpanetToolkit file and showing results 	 76
Figure 4.45. 	 Running script from Python Shell	 77
Figure 4.46. 	 Result of running script	 77
Figure 4.47. 	 Copying the epanet2.h and epanet2.dll files to the
				 Project1 folder	 80
Figure 4.48. 	 Creating a new project using Dev-C++	 80
Figure 4.49. 	 Saving the ConnectEpanetAPI.cpp file inside the Project1
				 folder	 81
Figure 4.50. 	 Files generated in the Project1 folder	 81
Figure 4.51. 	 “Project Options” window using Dev-C++	 82
Figure 4.52. 	 Selecting a compiler to use	 83
Figure 4.53. 	 Search and selection of epanet2.dll and epanet2.h files	 83
Figure 4.54. 	 Adding a directory to save the epanet2.h and epanet2.dll files	 84
Figure 4.55. 	 Output tab settings	 84
Figure 4.56. 	 Source-code compiling result	 85
Figure 4.57. 	 Displaying the Developer tab	 87
Figure 4.58. 	 Menu Developer and its commands	 87
Figure 4.59. 	 Inserting Module1 into Project	 88
Figure 4.60. 	 Changing the project and module names	 89

Figure 4.61. 	 Error at declaring the Epanet functions	 90
Figure 4.62. 	 Correct declaration of the Epanet functions	 90
Figure 4.63. 	 Saving the ConnectAPIEpanet file	 91
Figure 4.64. 	 Downloading the Epanet-2.1-win.tar.gz file	 92
Figure 4.65. 	 “epanet2.dll” 64-bit file	 92
Figure 4.66. 	 Copying epanet2.dll to the folder System	 93
Figure 4.67. 	 Excel worksheet	 93
Figure 4.68. 	 Inserting the button controls	 94
Figure 4.69. 	 Routine BtnOpen_Click	 95
Figure 4.70. 	 Routine BtnAccept_Click	 96
Figure 4.71. 	 Assign the macro BtnOpen_Click to the Open button	 96
Figure 4.72. 	 Result of applying the macros	 97
Figure 5.1. 	 Functions for retrieving data from demand nodes	 101
Figure 5.2. 	 Functions used to retrieve pipe data	 101
Figure 5.3. 	 Reviewing data stored in the DemandNode and Pipes vectors	 102
Figure 5.4. 	 Consulting the number of pipes with a 12” diameter using
				 Epanet	 103
Figure 5.5. 	 Modifying pipe diameters with the Epanet Group Edit tool	 103
Figure 5.6. 	 Modifying pipe diameters with the Epanet library function	 104
Figure 5.7. 	 Use of the ENsolveH and ENsaveH Epanet library functions	 106
Figure 5.8. 	 Net3.rpt and Net3.out files created upon finishing the process	 107
Figure 5.9. 	 Step-by-step hydraulic simulation with the Epanet library	 108
Figure 5.10. 	 Introducing water quality parameters in Epanet	 110
Figure 5.11. 	 Use of the ENsolveQ Epanet library function	 110
Figure 5.12. 	 Step-by-step water quality simulation using the Epanet library	 111
Figure 5.13. 	 Functions that help to generate a results report	 113
Figure 5.14. 	 Functions used to calculate pressure at node 23	 115
Figure 5.15. 	 Tool to reverse the oppositely-oriented links with help
				 of the Epanet library	 117

— 9 —

Water utilities are betting heavily on the use of computer
applications such as Computer-Aided Drafting (CAD),
and Geographic Information Systems (GIS), along with

other computing tools and specialized software for modeling water-
supply systems in both freeware or licensed software forms.

Many of the computer applications associated with the use of models need to have
a hydraulic simulator that will provide a network response to any given scenario
according to the defined hydraulic and water-quality variables. Epanet, on top
of covering this need as an independent application that has its own graphical
interface for constructing a network model and analyzing its results, permits the
connection of its Toolkit to any other graphical interface, thus opening a broad field
of possibilities for any technician or researcher that wants to go beyond what the
application currently offers.

The Epanet Toolkit can be integrated into any native programming environment
or licensed software programs such Excel, AutoCad, ArcGIS, etc. or their freeware
versions such as OpenOffice, gvSIG, QSIG etc. As a matter of fact, this is what some
commercial programs developed by companies or universities have done with the
aim of designing and analyzing water distribution networks.

The Epanet toolkit library has many functions that help us to retrieve and modify
certain parameters of a network model before and after carrying out a hydraulic
simulation. This permits us step-by-step control of its simulation process. Little
information exists in the technical literature, however, concerning the how to use of
all these functions. More information is needed on how to use the Toolkit in the
most common programming environments and how to resolve the most frequent
problems.

P R E S E N T A T I O N

U s i n g t h e E pa n et To o l k i t

— 10 —

The current book aims to help postgraduate students, technical personnel and
researchers to begin programming with the Epanet library using different languages
and environments. In so doing, use of the majority of the functions contained in
the library can be learned by carrying out practical exercises using the Visual Studio
2017 programming environment, thus, creating an understanding in the use that can
be used afterwards to create his/her own tools.

— 11 —

The Epanet software has become the most widely used tool
worldwide for modeling water distribution networks. Its
success is due to the fact that its distribution is free, and also

because we can use the source code of the graphic interface, as well as
its hydraulic calculation engine for our own purposes.

The Epanet Toolkit can be downloaded from the official website of the United States
Environmental Protection Agency (USEPA US). It is a set of files (mainly headers),
that enable us you to use the Epanet library (epanet2.dll) functions. These files were
created in programming environments that are no longer used today.

The Epanet Toolkit can be integrated into any native programming environment or
in many proprietary software packages, such as Excel, AutoCAD, ArcGIS; or in free
software packages as Open Office, gvSIG, QGIS, etc.

In the previous Spanish edition of this book, a great effort was made to collect all
the existing information related to how to connect the Epanet library to different
programming environments. No other manual offered step by step explanation on
how to make such a connection.

The main changes made with respect to the Spanish edition are:

• 	 Connection of the Epanet library (epanet2.dll) to the Visual Basic and C ++
products of the new version of Microsoft Visual Studio Community 2017.

• 	 Connection of the Epanet library (epanet2.dll) to the new version of Matlab
(R2017b).

• 	 Addition of a new environment from to which you can connect the Epanet
library: Microsoft Excel 2016, through its programming module (VBA).

The objective pursued in this new edition remains the same as in the Spanish edition,
to help understand how to connect the Epanet library, in its two versions 2.00.12 for
32 bits, and 2.01.00 for 64 bits, to different programming environments, and thus to
be able to analyze and solve problems related to the design and operation of drinking
water distribution networks.

The authors

P R O L O G U E

U s i n g t h e E pa n et To o l k i t

— 12 —

— 13 —

1.1.	 What is Epanet?

Epanet is a computer program that carries out extended-period
simulations (one or several days) of the hydraulic behavior and
the evolution of water quality in pressurized-pipe networks. A

network is made up of pipes, nodes (pipe junctions) pumps, valves,
storage tanks, and reservoirs. Epanet tracks the evolution of flows
in pipes, the pressure at every node, water height in tanks, and the
concentration of chemical species throughout the network during a
simulation period made up of multiple time steps. Additionally, it can
simulate water age and perform source tracing.

Epanet has been designed and developed by the United States Environmental
Protection Agency, USEPA. As such, it is in the public domain and is distributed
freely on its official website: https://www.epa.gov/water-research/epanet. The
original version was developed in English and has since been translated to other
languages such as Spanish , French, Italian, Czech, German, Portuguese, etc.

On the official EPA webpage, aside from being able to download the program
(v.2.00.12), the additional files, shown in Figure 1.1. can be downloaded.

1	 E p a n e t S o f t w a r e

U s i n g t h e E pa n et To o l k i t

— 14 —

Figure 1.1. List of Epanet files on the EPA website

The following files are available on the EPA website:

•	 User’s manual
•	 Programmer’s toolkit
•	 The Epanet source code files
•	 A text file that lists program updates
•	 Multi-Species Extension

To learn how to use this tool you can consult the User’s Manual that is available on
the EPA website.

1.2.	 Physical and non-physical components

Epanet models a water distribution network as a group of links connected to
nodes. The links represent pipes, pumps or control valves. The nodes represent
tanks, reservoirs, or pipe junctions with or without water demand. Epanet
employs these six objects to carry out a simulation in a water distribution
network.

Aside from these aforementioned elements, there are other complementary
components that help to describe the behavioral and operational aspects of the
system. These non-physical components are: curves, patterns and controls. For
more information, consult the Epanet User’s Manual.

— 15 —

E p a n e t S o f t w a r e

1.3.	 What can be done on Epanet?

Epanet was developed to be a research tool for improving our knowledge of the
movement and fate of drinking water constituents within water distribution
networks. Sampling program design, hydraulic model calibration, chlorine
residual analysis, and total chlorine doses supplied to a water user are among
its different uses. Epanet can also be of help when evaluating different
management strategies aimed at improving water quality throughout the system,
such as:

•	 Altering source utilization within multiple source systems
•	 Altering pumping and tank filling/emptying schedules
•	 Secondary water treatment implantation, such as re-chlorination at storage

tanks
•	 Targeted pipe cleaning and replacement.

Epanet can also be used to improve the hydraulic network characteristics helping
in the design of new elements, the reduction of operational costs, vulnerability
studies, bottleneck detection, water quality and residence time analysis in the pipes,
pressure control, to regulate the use of tanks in order to reduce water residence time,
predicting the network response in supply point closures or the incorporation of
new urbanizations, contingency planning, as well as the introduction of uncontrolled
contaminants, network sectorization for controlling leaks and better network
management, etc. In the future, models should be used as a continuous support tool
for the technical decision-making in all water utilities.

1.4.	 Application limitations

By being a quasi-static hydraulic model (non-inertial model, that is to say, it doesn’t
consider abrupt flow changes in the network), cannot model rapid flow phenomena
such as: a rupture in a pipe, water hammer caused by a sudden valve closure or the
start of stop of a pump, sudden return valve closure, etc.

— 16 —

U s i n g t h e E pa n et To o l k i t

In regards to water-quality modeling, Epanet does not consider the dispersion term
in the differential equation for transport of the modelled substance. This term, along
with the influence of dispersion is important in low velocity network pipes. Tzatchkov
el al. (2002)1 published and applied an algorithm that allows for the consideration of
this term using the results file from the Epanet hydraulic calculations.

1.5.	 Installing Epanet on 32/64-bit Windows

The latest version of Epanet, as well as its dynamic library (dll) have been made to run
in a Windows 32-bit Operating System (OS). When newer computers appeared with
a Windows 64-bit OS architecture, some Epanet users wondered if the application
would cease to work on their updated models. In the end, these worries were without
merit, no compatibility problems arose. Currently Epanet can be used on Windows 10
with total functionality2. The different versions of Epanet from 1.0 to 2.0 published by
the USEPA have been designed and developed to be installed and run on a Windows®
environment. Some researchers have rewritten the original source code in other
programming languages for use in other environments such as Linux and MAC.

A small problem surfaced, however, when the Online Help file couldn’t be opened
on the Windows Vista OS or its subsequent versions. This was due to Microsoft’s
exclusion of the help program WinHlp32.exe on those operating systems.
Downloading and installing the WinHlp32.exe program from the Microsoft’s official
support page https://support.microsoft.com/en-nz/help/917607/error-opening-
help-in-windows-based-programs-feature-not-included-or-h resolves this issue.

On that note, Elad Salomons describes the required steps for using the Epanet’s
online help file web: http://www.water-simulation.com/wsp/2015/10/01/how-
to-open-epanets-help-file-in-windows-10/.

1		 Velitchko G. Tzatchkov, Alvaro A. Aldama, Felipe I. Arreguin, “Advection-dispersion-reaction
modeling in water distribution networks”, Journal of Water Resources Planning and Management,
American Society of Civil Engineers, vol. 128(5), p. 334-342.

2		 http://www.water-simulation.com/wsp/

— 17 —

E p a n e t S o f t w a r e

1.6.	 User list

Epanet has created a turning point in the world of hydraulic network simulation
software. Its free availability, the EPA’s backing and the quality work of its author, L.
Rossman, have made this possible.

Since Epanet’s first appearance, Prof. William James from the University of Guelph
(Canada) compiled a user list with a subscription option that, for now, is free of
charge. It permits Epanet users to find out the latest news about the program, share
experiences, and raise questions that can be answered by more experienced users.

As is the norm in users lists, there is an address listserv@listserv.uoguelph.ca reserved
for communication with the server through commands, and another EPANET-
USERS@LISTSERV.UOGUELPH.CA for access to messaging. Subscription to the
email list is quite simple, all that is required is to send an email to listserv@listserv.
uoguelph.ca with the following message: SUBSCRIBE EPANET-USERS and your
user name. Example: SUBSCRIBE EPANET-USERS Oscar Vegas Niño.

It is important to leave the subject field blank, and to make sure that the message
contains no other text or characters (like a period, etc.). In a question of minutes the
system will respond with another email confirming the user’s successful subscription
to the mailing list or informing of some error in the original message.

To remove yourself from the subscription list, it is necessary to send an email to
listserv@listserv.uoguelph.ca with the following message: UNSUBSCRIBE
EPANET-USERS user name. To ask questions, make consultations, or give replies
it is necessary to send an email to the following address: EPANET-USERS@
LISTSERV.UOGUELPH.CA. This message will be sent to all people on the User
List.

There is also a developer (researcher) community that works to add features to
Epanet and resolve issues surrounding other user’s queries. Use the following link:
http://community.wateranalytics.org/ to sign-up to this community.

— 18 —

U s i n g t h e E pa n et To o l k i t

— 19 —

2.1.	 Sections that make up the input file

An input file that Epanet can read must have the following
extensions *.inp (ASCII text file) or *.net (binary file) along
with a defined data structure that stores all the necessary

information for viewing and creating a valid simulation of the network
model being worked upon.

The Input File data is clustered in distinct sections, each section begins with a
keyword enclosed in brackets, which allows for clear identification. The various key
words, which total 29, are listed on Table 2.1.

E p a n e t d a t a s t r u c t u r e2	

Table 2.1. Keywords for the different sections of the input file

Network
Componets

System
Operation

Water
Quality

Options and
Reporting

Network
Map/Tags

[TITLE]
[JUNCTIONS]
[RESERVOIRS]
[TANKS]
[PIPES]
[PUMPS]
[VALVES]
[EMITTERS]

[CURVES]
[PATTERNS]
[ENERGY]
[STATUS]
[CONTROLS]
[RULES]
[DEMANDS]

[QUALITY]
[REACTIONS]
[SOURCES]
[MIXING]

[OPTIONS]
[TIMES]
[REPORT]
[REACTIONS]
[BACKDROP]
[END]

[COORDINATES]
[VERTICES]
[LABELS]
[TAGS]

— 20 —

U s i n g t h e E pa n et To o l k i t

The order of these distinct sections is unimportant, just assure that when a section
refers to a node or link, that it be established previously in any of the following
sections: [JUNCTIONS], [RESERVOIRS], [TANKS], [PIPES], [PUMPS], or
[VALVES]. For that reason, it is recommended to place these sections first just after
the [TITLE] section. The sections corresponding to “Network Map and Tags” are
not used in the Epanet simulations so they may or may not be in the file.

Each section may contain one or more lines of data, according to the number of
elements that are added to our network model. Blank lines can appear anywhere in
the file, and the semicolon (;) can be used to indicate that what follows is a comment
and should not be interpreted as data. The maximum number of characters that a
text line can have is 255. The tags “ID” are used to identify visible components,
curves and patterns, they can consist of any combination of numbers and letters up
to 31 characters.

2.2.	 Main sections for drawing a network

When we draw a water distribution network using the Epanet’s graphical interface
and then proceed to save it, the application automatically generates the labels
(keywords found in brackets) that make up the input file which can have up to 29
sections.

If the supply network was originally drawn on AutoCAD, GIS or any other
application that is not Epanet, another tool must be used to transfer the information
stored in those formats, particularly the drawing of the network. Another choice is to
program our own options that help to draw the pipes and nodes, the most numerous
elements in a network, which is why it is enough for the input file to have just four
main sections: [JUNCTIONS], [PIPES], [COORDINATES], [VERTICES]. If the
pipes do not have vertices, the section [VERTICES] can be dispensed with. The
input file would be as follows:

— 21 —

E p a n e t d a t a s t r u c t u r e

[JUNCTIONS]
;ID	 Elev.	 Demand		 Pattern

[PIPES]
;ID Node1 Node2 Length Diameter Roughness MinorLoss Status

[COORDINATES]
;Node X-Coord Y-Coord

[VERTICES]
;Link X-Coord Y-Coord

The rest of the remaining elements such as pumps, valves, tanks, and reservoirs,
should they exist, can be added manually using the Epanet interface to complete the
network model.

— 22 —

U s i n g t h e E pa n et To o l k i t

— 23 —

3.1.	 Epanet’s API

The Epanet Toolkit, which can be downloaded off of the official
EPA website, is a set of files made up of an online-help file, a
text file, a dynamic library and four header files that allow

the functions in the dynamic library to be linked to the programming
environment we are using. Using these functions, we can access
simulation results and the information contained in the Epanet input file
which is available in an inp format.

Epanet’s API is a dynamic library, a .dll extension file which comes with the rest of
the files that make up the Toolkit. This library is made up of a series of functions that
permit programmers to personalize the Epanet engine module according to their
own particular needs.

A bit of support can be found in the online-help file, included in the Toolbox, where
a sequence of steps is given for using the functions, but for a user with little computer
programming knowledge, using the dynamic library will be complicated given that
he will not having all the lines of code necessary for its proper operation.

The Epanet Toolkit in the latest version (v2.00.12), is made up of seven files that are
shown in Figure 3.1 and are described in Table 3.1.

T h e E p a n e t T o o l k i t 3	

— 24 —

U s i n g t h e E pa n et To o l k i t

Figure 3.1. Files that make up the Epanet Toolkit

Table 3.1. Description of the files that make up the Epanet Toolkit

epanet2.bas declarations module for using the Toolkit with Visual Basic 6.0

epanet2.dll the Toolkit function library

epanet2.h header file for using the Toolkit with C/C++

epanet2.lib LIB file for using the Toolkit with Borland C/C++ 5.0 or Microsoft
Visual C/C++ 6.0

epanet.pas import unit for using the Toolkit with Delphi (Pascal)

Readme describes the content of the toolkit

Toolkit.hlp Windows Help file that describes how to use the Toolkit

The variables and functions used in each of these headers are for use in programming
environments that run on a 32-bit Windows OS. If we want to use the Toolbox in
more updated programming environments, we have to modify the data used for
certain variables and functions as well as the Epanet library location that we are
using.

The headers that contain variables and functions can be incorporated into
programming environments that run on a 32-bit Windows OS such as C/C++,
Delphi Pascal, Visual Basic, or any other language that allows for the use of functions
included in a Windows DLL. The .dll file included in the Toolbox is called epanet2.
dll and is distributed jointly with the Epanet application. It contains 55 functions

http://epanet2.bas
http://epanet2.dll

— 25 —

E p a n e t T o o l k i t

that allow for: the opening of a data file, the reading and modifying distinct design
and network operation parameters, running extended period simulations, retrieving
results, saving these to file, or writing results to a text file in a given format.

In the help file, also included in the Toolkit, the proper manner of using these
functions in different programming environments is briefly described using some
basic examples.

The toolkit is useful for developing customized applications such as optimization or
automatic calibration of models in which multiple analyses are required according
to the values that adopt certain input parameters within an iterative process.
Moreover, the dynamic library (epanet2.dll) permits its functions to be added to
other integrated environments based on CAD, GIS or databases.

— 26 —

U s i n g t h e E pa n et To o l k i t

3.2.	 API functions

The Epanet (v2.00.12) dynamic library, also called API (Aplication Programming
Interface), is written in the ANSI C language and has separate code modules for
input data processing, hydraulic analysis, water-quality analysis, solving systems of
linear equations with sparse matrices, and report generation. It has 55 functions and
104 variables that are used with functions such as input parameters. The functions
arranged according to their task are shown on Table 3.2.

Table 3.2. Epanet Toolkit functions by task

Task Functions
Running a complete
“command line style”
simulation

ENepanet

Opening and closing the
EPANET Toolkit system

ENopen ENclose

Retrieving information about
network nodes

ENgetnodeindex
ENgetnodeid

ENgetnodetype
ENgetnodevalue

Retrieving information about
network links

ENgetlinkindex
ENgetlinkvalue
ENgetlinktype

ENgetlinknodes
ENgetlinkid

Retrieving information about
time patterns

ENgetpatternid
ENgetpatternindex

ENgetpatternlen
ENgetpatternvalue

Retrieving other network
information

ENgetcontrol
ENgetqualtype
ENgetoption
ENgetversion

ENgetcount
ENgetflowunits
ENgettimeparam

Setting new values for
network parameters

ENsetcontrol
ENsetnodevalue
ENsetlinkvalue
ENaddpattern
ENsetpattern

ENserpatternvalue
ENsetqualtype
ENsettimeparam
ENsetoption

Saving and using hydraulic
analysis results files

ENsavehydfile ENusehyfile

Running a hydraulic analysis ENsolveH
ENopenH
ENinitH

ENrunH
ENnextH
ENcloseH

— 27 —

E p a n e t T o o l k i t

Task Functions
Running a water quality
analysis

ENsolveQ
ENopenQ
ENinitQ
ENrunQ

ENnextQ
ENstepQ
ENcloseQ

Generating an output report ENsaveH
ENsaveinpfile
ENreport
ENresetreport

ENsetreport
ENsetstatusreport
ENgeterror
ENwriteline

Table 3.2 Epanet Toolkit functions by task (Continuation)

The procedure for working with these functions is as follows:

1.	 Use the ENopen function to open the Epanet library, which will enable the
rest of the functions, except the ENepanet function.

2.	 Use the ENsetxxx functions to change the properties of elements or
characteristics of the network or use the ENgetxxx functions to retrieve data
from the network saved in the input file (file with inp extension).

3.	 For a complete simulation use the ENsolveH function (this function
automatically saves the results in a hydraulic-results file), or if a step-by-step
simulation is desired use the following sequence of functions: ENopenH,
ENinitH, ENrunH, ENnextH, ENcloseH, and access the results through
the ENgetxxx function series.

4.	 The ENsolveQ function runs a complete simulation of a water quality model
(this function automatically saves the hydraulic and water quality results in
an output file), or if running the simulation step-by-step, use the following
functions sequence: ENopenQ, ENinitQ, ENrunQ, ENnextQ, ENcloseQ,
and access the results through the ENgetxxx function series.

5.	 If running new analyses is desired, return to step 2 or use the ENreport
function to save a results report formatted in the results report file.

6.	 Call the ENclose function to close the Epanet file that was opened initially,
this frees up the memory that was occupied on the computer.

— 28 —

U s i n g t h e E pa n et To o l k i t

To sum up, with the Epanet API we can do the following tasks:

1.	 Open and close the Toolkit
2.	 Retrieve and set network parameters
3.	 Run a hydraulic simulation
4.	 Run a water quality simulation
5.	 Retrieve results
6.	 Generate a results report

To know what each of the functions does, it is recommended to open the help file
that also comes included in the Toolkit and click on the section “Toolkit Functions
by Name”, where all functions in the Epanet library can be seen in a drop-down
menu. Figure 3.2 shows the help file with the Epanet functions.

— 29 —

E p a n e t T o o l k i t

Figure 3.2. Online help with the Epanet Toolkit for programmers

— 30 —

U s i n g t h e E pa n et To o l k i t

— 31 —

The dynamic link library (epanet2.dll), in its latest version
2.00.12, launched in March 2008, was written in the C
programming language. Moreover, it was compiled for use in

Windows 32-bit OS programming environments such as Borland C/
C++ 5.0, Delphi Pascal 5.0, Visual Basic 6.0, or any other environment
that allows functions to be incorporated into a Windows DLL.

The Toolbox includes header files where variables and functions are declared that will
allow us to interact with the Epanet library in order to obtain or modify information
of the network model being studied.

In order to use the Epanet dynamic library (epanet2.dll) in the new 64-bits
programming environments, it will be necessary to generate a new header file with
modifications to the types of data used by the variables, the functions and their input
parameters, according to the programming language being used.

The purpose of this chapter is to learn how to use the Epanet dynamic library with
the most prevalent Toolbox items in a variety of languages so as to allow the user to
choose the language that best suits him. The most-used programming languages for
working with the Epanet Toolkit are Basic 6.0, Basic .NET, the technical computing
language (Matlab), C#, Python, and C++. The programming environments that
support the aforementioned languages will be installed and run on a Windows 10
64-bit OS.

C o n n e c t i n g E p a n e t ’ s
A P I t o p r o g r a m m i n g
e n v i r o n m e n t s

4	

— 32 —

U s i n g t h e E pa n et To o l k i t

There is no problem installing and running 32-bit applications on a Windows 10 64-
bit OS. The steps to follow for each programming environment will be given in order
to connect the Epanet’s API, along with a few simple exercises to make sure that we
can access the stored information in an Epanet inp file through the dynamic library
(epanet2.dll). Before using the Epanet library, it is recommended to have Epanet
2.00.12 installed, which can be downloaded from the following link: https://www.
epa.gov/water-research/epanet.

The network model that will be worked on is the Net3.inp water distribution
network which comes with the Epanet application installer. The exercise consists
of retrieving the number of nodes (the sum of the number of tanks, reservoirs and
demand nodes), number of links (the sum of pipes, valves, and pumps), and the
flow unit. More examples are given in Chapter 5, where the majority of functions
available in the Epanet’s library are used.

4.1.	 Visual Basic 6.0 (Basic 6.0)

Visual Basic 6.0 is a programming language and an Integrated Development
Environment (IDE). It is derived from the oldest version of the BASIC language and
as such, is considered a useful language in that it is relatively easy to use for beginners.
Visual Basic 6.0 is the latest edition of Visual Basic, it is a programming language
driven by events. The latest version published in 1998 stopped being supported
by Microsoft in 2008, but in spite of this, the 32-bit versions that it generates are
compatible with the most modern platforms such as Windows Vista, Windows
Server 2008, Windows 7, Windows 8 and Windows 10. Visual Basic contains an
IDE that has a text editor for editing the source code, a debugger, a compiler, and a
graphical-interface editor.

Although Basic 6.0, as a native language has ceased to be supported by Microsoft,
its syntax remains in use for the VBA language (Visual Basic for Applications) and
Microsoft remains the owner of other popular applications such as Excel on up to
the latest version of Office 2016.

https://www.epa.gov/water-research/epanet
https://www.epa.gov/water-research/epanet

— 33 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

Whenever installing Visual Basic 6.0 in any of its versions on a 64-bit Windows OS,
an installation-error message will appear, blocking the process. This is due to the
Visual Basic 6.0 installer setup.exe being compiled in 16 bits. On a 64-bit Windows
OS, 32-bit applications run without problems but cannot execute 16-bit ones. On
the Internet we can find many aids such as blogs and video tutorials which tell us
how we can continue using this application on a 64-bit Windows OS.

Once our application is installed on a 32/64-bit Windows OS, we have to follow a
series of steps in order to start using the functions in the Epanet library (epanet2.
dll). These steps are as follows:

A. 	 Create a project folder.

	 It is recommended to create this on a disc unit that is not a root directory
(C:), this will prevent future reading and writing problems. In this folder, the
epanet2.dll and epanet2.bas files will be found. Both files are found in the
compressed file that can be downloaded from the following link: www.epa.gov/
water-research/epanet. One possible route could be: D:\ConnectAPIEpanet\
VB6.0\, where the aforementioned files will be stored in the VB6.0 folder.

B. 	 Adding the epanet2.bas file to a new project

	 The following step is to open the Visual Basic 6.0 application and load epanet2.
bas. For that we need to go to the project menu and select the “Add module”
option. We can see a form where we will click on the “existing” tab and proceed
to navigate through the directories until finding the epanet2.bas and saving it in
the VB6.0 folder. We change the name of the module “Module1” to “Epanet2.
bas” as shown in Figure 4.1.

http://www.epa.gov/water-research/epanet
http://www.epa.gov/water-research/epanet

— 34 —

U s i n g t h e E pa n et To o l k i t

Figure 4.1. Loading the epanet2.bas file into a project

	 Afterwards, the names of our project and form will be changed. By default, the
name of the project is “Project1” and the form “Form1”. The new name of the
project will be “EpanetToolkit” and the form “FormConnectAPI”. Each form
that is created must be given a name and a title (Caption), which in our case
will be “ConnectAPI”. The new changes can be seen in Figure 4.2.

— 35 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

Figure 4.2. Name changes to the project name and form

	 With these changes, we can save our project and form in the “VB6.0” project
folder. There should be four files in this folder, see Figure 4.3.

Figure 4.3. Files saved in the projects folder VB6.0

— 36 —

U s i n g t h e E pa n et To o l k i t

	 Now we are ready to begin using the functions found in the Epanet dynamic
library. The following is to prepare a form where our inp Epanet file path can
be viewed, as well as the number of links, nodes and the flow unit.

C. 	 Preparing the form

	 Our form will have the following controls: 01 Frame, 04 Label, 02
CommandButton, 04 Textbox, 01 CommonDialog. This last control does not
appear in the toolkit when beginning a new project. To add this to the toolbox
it is necessary to go to Project Menu, then to select the Components option
and afterwards, click on the Controls tab and look for the Microsoft Common
Dialog Control 6.0, and mark it before finally clicking on Accept. This control
is not visible in run time mode, only in design mode. The CommonDialog
control added can be viewed on Figure 4.4.

Figure 4.4. CommonDialog Control added to the VB6.0 Toolkit

— 37 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

	 In Table 4.1, we can see the original names of the controls added to the form
and the changed names along with the content that these will have in the
Caption and Text properties.

Table 4.1. Controls added to the main form (Visual Basic)

Property: Name
[Original]

Property: Name
[Changed]

Property

Frame1
Label1
Label2
Label3
Label4
TextBox1
TextBox2
TextBox3
TextBox4
CommandButton1
CommandButton2
CommonDialog

FrameContainer
LblINP
LblNumL
LblNumN
LblFlowUnt
TxtINP
TxtLinks
TxtNodes
TxtFlowUnt
CmdOpen
CmdAccept
CDialog

Caption: empty
Caption: Select Epanet Inp file
Caption: # of links
Caption: # of nodes
Caption: Flow Unit
Caption: empty
Caption: empty
Caption: empty
Caption: empty
Caption: ...
Caption: Accept

We can see the final design that our form will have in Figure 4.5, in design mode as
well as in run mode.

Figure 4.5. Form in design and run time modes

— 38 —

U s i n g t h e E pa n et To o l k i t

D. 	 Working with the Epanet Toolkit

	 To run a sequence of lines of code, it must be associated to some event
corresponding to objects inserted in the form. In our case, we have to associate
code with the CmdOpen and CmdAccept objects, and for that, we have but
to double click on each object and the text editor will appear wherein we will
write our lines of code. In Figure 4.6, part of the code sentences associated with
the CmdAccept button is shown. To download the complete code click on the
following link: https://www.imta.gob.mx/biblioteca/download/?key=244.

Figure 4.6. Source code associated to the CmdAccept button

https://www.imta.gob.mx/biblioteca/download/?key=244VB61.0_eng.
https://www.imta.gob.mx/biblioteca/download/?key=244VB61.0_eng.

— 39 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

	 Two events are coded in the application. In the first, it is necessary to click
on the CmdOpen button to select the Epanet inp file, Net3.inp, and show its
complete path in the text box next to the button. The second event is to click
on the CmdAccept button so that it can show us the total number of nodes
(the sum of demand nodes, reservoirs and tanks), the total number of links
(the sum of pipes, valves and pumps), and the flow unit. Figure 4.7 shows the
result of said query and Figure 4.8 the summary of the numbers of elements on
Epanet.

Figure 4.7. Result from consulting number of links and nodes in the Net3 network

Figure 4.8. Number of nodes and links in the Net3 network using Epanet

— 40 —

U s i n g t h e E pa n et To o l k i t

	 The functions that have been used to consult the information required by
the Epanet Toolkit are: ENopen, ENgetcount, ENgetflowunits, y ENclose. If we
want to consult the headloss formula we will not be able use the Epanet Toolkit
because there is no programmed function for that task in the library. To obtain
it we have to use the Visual Basic functions and scan through the inp file until
finding said parameter in the [OPTIONS] section.

4.2.	 Visual Studio 2017 (Visual Basic .NET)

In 2001 Microsoft proposed leaving the API Win32 based development to migrate
to a common library framework, known as .NET Framework, irrespective of the
OS version, to give support to different programming languages such as Basic.NET,
C#, etc, aiding the translation of code between them; this was the Visual Basic 6’s
successor.

The Basic language evolved to integrate the .NET platform; there it lost its identity
as a unique language, and became part of a product package called Microsoft .NET;
within this package or framework, this language can be found now renamed Visual
Basic .NET, which runs on Microsoft’s Visual Studio environment. This new version
of the language possesses deep differences in programming methods compared to
Visual Basic 6, but maintains strong similarities in its basic syntax.

The following is an explanation of how to connect the Epanet API (32 bit version
2.00.12) to the new Visual Studio 2017 programming environment, along with a
how-to guide for transforming the epanet2.bas file into a new module file (Epanet2.
vb) compatible with the new programming environment (declaration of variable
data types, functions and input parameters).

Once Visual Studio 2017 is installed, we prepare our work environment in order to
use the epanet2.dll file functions. The same network model (Net3.inp) will be used
and the total number of nodes, links and flow unit will be retrieved. The sequence of
steps is as follows:

— 41 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

A. 	 Create a new project

	 We open Visual Studio 2017 and click on New Project, a window will appear in
which we will choose a programming language to use (Visual Basic) and then
we select the option of creating an application with a Windows user interface
(Windows Forms Application). Next, we write a name for our project, put
(ConnectEpanetAPI) in the solution, place it in the desired directory and
finisih by clicking on the Accept button. Figure 4.9 summarizes the previous
steps.

Figure 4.9. Creating a new project in Visual Studio 2017

	 After creating the project, an empty form will appear in which we can add
the objects (Controls) needed to design our own tools. We will not yet jump
ahead to that, however, first we have to prepare our new base module (Epanet2.
vb) where global variables and functions that interact with the Epanet library
(epanet2.dll) are declared.

— 42 —

U s i n g t h e E pa n et To o l k i t

B. 	 Adding the Epanet2.vb to a new project

	 The content of the epanet2.bas file, that is used in Visual Basic 6.0, should be copied
to a new Visual Studio 2017 base module file (Epanet2.vb) and the declarations
of data types, global variables, functions and their parameters modified. Part
of the changes carried out on the epanet2.bas module that is converted into
Epanet2.vb are shown in Figure 4.10 for comparison. In the following link:
https://www.imta.gob.mx/biblioteca/download/?key=266 the Epanet2.vb can
be downloaded for direct use in our project just like in Figure 4.11.

Figure 4.10. Declaration of the data types, variables and functions
on VB6.0 and VB.NET

Figure 4.11. Epanet2.vb module added to project

https://www.imta.gob.mx/biblioteca/download/?key=266

— 43 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

C. 	 Copying the epanet2.dll file in the Debug folder

	 After adding the base module, we need to copy the Epanet library (epanet2.dll)
inside the “Debug” folder that is found inside the “bin” folder. For that we have
to click on the “Show All” button to show all the files from the solution explorer
and view the “bin” and “obj” folders as shown in Figure 4.12.

	 Upon opening the “Debug” folder it is possible to verify that the library has
been copied correctly (Figure 4.13). Finally we proceed to save all the changes
that were made.

Figure 4.12. Viewing the bin and obj folders on the VB.NET
solution explorer

— 44 —

U s i n g t h e E pa n et To o l k i t

Figure 4.13. Copying the epanet2.dll file to the Debug folder

	 After these steps we can add the controls to our form, the same ones that were
used for Visual Basic 6.0 will be inserted here.

D. 	 Preparing the form

	 The controls that will be added to the form are as follows: 01 GroupBox, 04
Label, 02 Button, 04 Textbox, 01 OpenFileDialog. This last control is visible
in design mode but not in run time mode. All these controls can be found in
the toolbox as can be seen in Figure 4.14. If the toolbox is not visible, we can
make it appear by pressing Ctrl+Alt+X or clicking on the View menu and in the
dropdown clicking on the Toolbox.

— 45 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

Figure 4.14. Visual Basic 2017 toolkit

	 Table 4.2 shows the original control names added to the form, the changed
names as well as the content that they’ll have in the Caption and Text properties.

— 46 —

U s i n g t h e E pa n et To o l k i t

E. 	 Working with the Epanet Toolkit

	 Just like in Visual Basic 6.0, it is necessary to associate a group of sentences to
some controls. In this case they are the same buttons, OpenBtn and AcceptBtn,
to which lines of code are associated. In Figure 4.15 we can see part of the
source code used to fulfill our objective and the final form in run time mode.
You can go to the following link to download and view all of the source code:
https://www.imta.gob.mx/biblioteca/download/?key=245.

	 The functions used are: ENopen, ENgetcount, ENgetflowunits, and ENclose.
If we want to consult the headloss formula used, it won’t be possible with
Epanet’s Toolkit because there is no such function in that library. To obtain it,
it is necessary to use the Visual Basic.Net’s own functions to browse through
the inp file until finding that parameter in the [OPTIONS] section.

Table 4.2. Controls added to the main form (Visual Basic.NET)

Property: Name
[Original]

Property: Name
[Changed]

Property

GroupBox1
Label1
Label2
Label3
Label4
TextBox1
TextBox2
TextBox3
TextBox4
Button1
Button2
OpenFileDialog

GBContainer
LblINP
LblNumLinks
LblNumNodes
LblFlowUnt
TxtINP
TxtLinks
TxtNodes
TxtFlowUnt
BtnOpen
BtnOk
OpenFD

Text: empty
Text: Select the Epanet Inp file
Text: # of Links
Text: # de Nodes
Text: Flow Unit
Text: empty
Text: empty
Text: empty
Text: empty
Text: …
Text: Accept
FileName: empty

https://www.imta.gob.mx/biblioteca/download/?key=245

— 47 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

Figure 4.15. Part of the source code and main form in run time mode

4.3.	 Matlab (technical computing language)

The first version of MATLAB goes back to the 70s, it was designed as a support
tool for the Theory of Matrices, Linear Algebra and Numerical Analysis courses
by the mathematician Cleve Moler. The name is an acronym: “MATrix
LABoratory”. It is mathematical software that offers an Integrated Development
Environment with its own programming language (M language) that allows
for the performing of operations with vectors, matrices and functions, lambda
calculus and programming oriented towards objects, as well as communication
with programs written in other languages and with other hardware devices.
Moreover, it has “Simulink” and “Guide”, two additional tools that further

— 48 —

U s i n g t h e E pa n et To o l k i t

increase the number of features found in MATLAB3. Originally, it was written in
Fortran over the course of several years, but currently it is written in C by “The
Mathworks”.

MATLAB is a programming and computing system based on the manipulation of
matrices. In this way, matrix algebra and other time-saving properties can be used. It
integrates numerical analysis, matrix calculus, signal processing, graphs, etc., within
an environment that is easy to use, and problems and solutions are expressed just as
they are when written mathematically, without the need to resort to using traditional,
lower-level programming.

MATLAB is very quick for certain operations when it can run its functions in
native code in sizes adequate for taking advantage of its vectorization capacities.
In other applications it is significantly slower than the equivalent code developed
in C/C++ or Visual .NET. All the same, it is a very useful and high level tool for
developing technical applications that are easy to use and can help to greatly increase
a programmers’ productivity compared to other development environments.

The programming in MATLAB is done through a language that is very similar to
high-level languages such as BASIC or C. This allows the user to group sentences
that are frequently used in the program and can be invoked later. Time and effort are
saved this way in successive sessions, since it is no longer necessary to write all the
sentences over again.

MATLAB has a basic code and several specialized libraries (toolboxes). Moreover,
it includes a great amount of predefined functions that help to perform typical
calculations, as well as to view data and results. Code lines written in an ASCII file
(with an *.m extension) can be run, if said file is in another subdirectory indicated in
the PATH or the current work directory.

3	 https://www.mathworks.com/products/matlab.html

— 49 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

The MATLAB user tends to be a person that needs something more than a calculator
but doesn’t want to involve himself with a programming language, that’s why the
work environment is easy to use, almost as easy as a calculator.

MATLAB is a very powerful program with a pleasing development environment
that includes development tools for scientific and technical calculation, graphic
visualization, as well as a high-level programming language. The last updated
version of MATLAB is R2018a and can be downloaded from the official webpage
www.mathworks.com, in 32 and 64 bits according to the user’s Windows Operating
System. The downloaded version for the development in this section is the 64-bit
R2017b and will still work with the Net3.inp network.

Marios Kyriakou and Demetrios Eliades have created a Toolkit for Matlab to connect
to Epanet, which is in the public domain and is accessible in a digital repository
managed by the OpenWaterAnalytics association on the freeware portal github,
which we will use in the current book.

A. 	 Create a Project Folder

	 Just like we’ve been explaining for other programming environments, it
is recommended that the project folder be created on a storage unit that
will not have problems upon being read or written. For example, if we
have two shared units: C: for installing programs and D: for saving our
work, a possible directory could be D:\Epanet_Matlab\Project1. In the
folder ‘Project1’ a compressed file will be saved from the following link,
https://github.com/OpenWaterAnalytics/EPANET-Matlab-Toolkit, in which
the steps to follow are given, as shown in 4.16.

	

http://www.mathworks.com
https://github.com/OpenWaterAnalytics/EPANET-Matlab-Toolkit

— 50 —

U s i n g t h e E pa n et To o l k i t

Figure 4.16. Downloading the Epanet Toolkit for Matlab

Figure 4.17. Folders and files our project will have

	 Afterward, we proceed to decompress the file and its content will be copied in
the ‘Project1’ folder as shown in Figure 4.17. Once done, we can eliminate the
file that was initially downloaded.

— 51 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

	 Each one of the files and the content that exists in each folder can be viewed in
Table 4.3.

Table 4.3. Files and folders contained in the zipped file

EPANET-Matlab-Toolkit-master.zip

Folder/File Description
32bit Folder that contains the following files for Windows 32bit

OS: epanet2.dll, epanet2.h, epanet2d.exe, epanetmsx.dll,
epanetmsx.
exe, epanetmsx.h

64bit Folder that contains the following files for Windows 64bit
OS: epanet2.dll, epanet2.h, epanet2d.exe, epanetmsx.dll,
epanetmsx.
exe, epanetmsx.h

networks Folder with five Epanet *.inp files and two *.msx files
Test Folder that has six Matlab files with an *.m extension in

which tests can be done for the Epanet functions used in
retrieving or modifying the data for the network elements

Epanet File with an *.m extension in which a class is created that
serves as an interface between MATLAB and Epanet

LICENSE File with an *.md extension in which a description is given
for the tool license

README File with an *.md extension that contains information
regarding software requirements, use of the toolbox and a
list of the functions that will be used with MATLAB as well
as new functions that support the new version of the Epanet
2.1 library

Run Tests File with *.m extension that has the names of the functions
to be called after clicking on the ‘Run’ button

— 52 —

U s i n g t h e E pa n et To o l k i t

	 Of the folders and files in our project folder ‘Project1’, only the 32-bit and 64-
bit folders are necessary as well as the epanet.m file, see Figure 4.18. The rest of
the folders can be saved in another directory.

Figure 4.18. Required files for using the Epanet Toolkit with Matlab

B. 	 Preparing the current project folder with Matlab

	 After preparing our project folder where our future Matlab files will be saved,
we can proceed to open the application and first we will have to choose our
work directory, that is to say the folder ‘Project1’. For that we follow the steps in
Figure 4.19.

— 53 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

	 First we will click on the button ‘Browse for folder’ and it will show us a
dialogue box. Second, we will browse through the disc units until finding our
project folder ‘Project1’ and we select it. Third, we will click on the ‘Select
folder’ button, then the 32bit and 64bit folders as well as the epanet.m file will
appear in the ‘Current Folder’ window as shown in Figure 4.20.

Figure 4.19. Steps for selecting the current work folder in Matlab

— 54 —

U s i n g t h e E pa n et To o l k i t

	 At this point it is worth mentioning how to go about working with the 32bit
and 64bit folders, as well as with the wrapper created (epanet2.m) to access the
functions written in the epanet2.dll 32 and 64 bit libraries in an easy manner.

	 These libraries have been modified and compiled with the new functions that
have been added thanks to the work of a group of researchers that contributed
their know-how to improving the Epanet Toolkit. Currently the latest available
version is 2.1, created on January 22th, 2018.

	 1.	 32bit and 64bit folders

		 These folders can be saved in any project folder but only one will be
called from the epanet2.m. file. This is due to the fact that the code
written in the epanet2.m file first analyzes if our computer is 32 or 64
bits. The computer OS on which these exercises are being developed is a
64-bits Windows 10. In this case, if we eliminate the folder named 64bit
and run the script Test1.m, it will show an error message, see Figure
4.21, because it won’t find said folder. To avoid any future problem, it is
recommended that these two folders go together in any new project.

Figure 4.20. Project folder ready for working with the Epanet Toolkit

— 55 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

Figure 4.21. Error message for not finding the 64bit folder in the project folder

	 2.	 The epanet2.m file

		 In this file we are going to find a class named Epanet, within which a
series of properties and methods are set that will enable the use of the
Epanet library functions.

	
	 All the developed functions up to the latest Epanet version (2.00.12)

created by the EPA have been kept. In the most recent version (2.1),
created by a group of researchers, several functions have been added,
like how to get the node and vertex coordinates for each link, as well as
functions for obtaining the property values of an element, for example
the diameter of pipes or their length.

— 56 —

U s i n g t h e E pa n et To o l k i t

C. 	 Creating our first script

	 To create our script we will click on the New Script button from the HOME
menu bar and it will create a new tab with the name Untitled in the editor
window as seen in Figure 4.22. We will also copy the network Net3.inp in our
project directory.

Figure 4.22. Creating a new script in Matlab

	 Then we write some lines of code like shown in Figure 4.23 and we save
the file under the name Test1. This script will allow the retrieval of the total
number of nodes and links as well as the flow unit used. In that code, the
Epanet class starts up with an input parameter, the name of the network
to be analyzed. Afterwards, it goes on to use new methods (functions)
declared in the Epanet class, and the results are printed out in the command
window. Lastly, we disconnect the Epanet library from the input file, which
frees up the memory used. To view the results in the command window we
press F5 on our keyboard or we click on the Run button from the EDITOR
menu. The file Test1.m can be downloaded from the following link:
https://www.imta.gob.mx/biblioteca/download/?key=243.

https://www.imta.gob.mx/biblioteca/download/?key=243
https://www.imta.gob.mx/biblioteca/download/?key=243

— 57 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

4.4.	 Visual Studio 2017 (C#)

C# (pronounced “C sharp”) is a programming language oriented towards objects, it
was developed and standardized by Microsoft® as part of its .NET platform, which
afterwards was approved as a standard by the European Computer Manufactures
Association (ECMA) and the International Organization for Standardization (ISO).
Its basic syntax is derived from C/C++ and it uses the objects model from the .NET
platform. It is similar to Java, although it includes improvements derived from other
languages. The creation of the language C#, comes from the overlap of drawing of
two positive signs over the two symbols of “C++” in seeking to invoke an image of
an evolutionary leap as was the case when going from C to C++.

Figure 4.23. Results shown after running the script

— 58 —

U s i n g t h e E pa n et To o l k i t

C# or C Sharp is a modern language, simple and entirely oriented towards objects. It
simplifies and modernizes C++ in the classes, namespaces, method overloading and
exception handling. The complexity of C++ was reduced, making it easier to use and
less error-prone. C# can be used to create Windows client applications, Web XML
services, distributed components, client-server applications, database applications
and user interface designs. This includes an integrated debugger and many other
tools. The C# language allows NULL values, enumerations, delegates, lambda
expressions and direct memory access which is not available in Java. It also allows
generic methods and types that provide greater performance and type security.

As a language oriented towards objects, C# allows for encapsulation concepts,
inheritance and polymorphism. All the variables and methods including the Main
method, which is an entry point for the application, are enclosed within class
definitions. The C# compilation process is simpler compared to C/C++, and it is
more flexible than Java. There are no independent header files, nor are the methods
and types that need to be declared in a determined order. A C# source code file
can define any number of classes, structures, interfaces and events. It saves time in
programming since it has a classes library that is very complete and well designed.

Microsoft Visual Studio 2017 offers compatibility with Visual C# and comes with
a complete code editor, a compiler, project template, designers, code assistants, an
efficient and easy to use debugger, and many other tools. The .NET Framework class
library offers access to numerous OS services and other useful and well-designed
classes that accelerate the development cycle significantly.

Through the use of this programming language, we can demonstrate how to connect
the Epanet API (32-bit version 2.00.12) within a Visual Studio 2017 environment
and have access to its functions. We also have to create a class that contains all the
properties and methods that will call the functions contained in the Epanet library,
what in computing terms is called a wrapper.

— 59 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

Once Visual Studio 2017 is installed, including C# language, we prepare our work
environment to begin using the Epanet library. The same network model (Net3.inp)
will be used and the total number of nodes, links and the flow unit used will be
retrieved. The following is a description of steps to follow.

A.	 Create a new project

	 We open Visual Studio 2017 and we click on New Project…, then a window
appears in which we choose the programming language to be used (C#) and
we select the option of creating an application with a Windows user interface
(Windows Forms Application). Next, we write a name for our project and our
solution (ConnectAPI) then we save it to the directory of our choosing and,
finally, we click on the OK button. Figure 4.24 summarizes these steps.

Figure 4.24. Creating a new project and solution with Visual Studio 2017

— 60 —

U s i n g t h e E pa n et To o l k i t

	 After creating a new project, an empty form will appear for us to add our
objects (Controls) that are necessary to design our own tools. This will be
done, further on down, however, since first we need to prepare a class folder
(EpanetCSharpLibrary.cs) where a group of global variables and functions will
be declared that will permit us to interact with the Epanet (epanet2.dll) library.

B.	 Adding an EpanetCSharpLibrary.cs object to a new project

	 To use all the functions in the Epanet library, a class that has all the global
variables will have to be created to allow interaction with the Epanet library.

	 Elad Salomons, through his webpage http://www.water-simulation.com/
wsp/ published an article dated April 21st 2013, titled ‘Using EPANet Toolkit
in C#’, available on the following link: http://www.water-simulation.com/
wsp/2013/04/21/using-epanet-Toolkit-in-csharp/, in which the content for
a new Epanet class can be viewed, created within a EpanetCSSharpLibrary
workspace that permits interaction with the Epanet (epanet2.dll)
library functions. This class can be downloaded from the following link:
https://www.imta.gob.mx/biblioteca/download/?key=962785, although it
is recommended to consult the article periodically in case of possible future
changes. The last update to the class file, created to connect to epanet2.dll with
C#, is the 24th of February, 2014.

	 With the following link: http://www.water-simulation.com/wsp/2014/02/25/
epanet-class-for-c-sharp/, Elad published another article related to Epanet and
C#, this time developed by Vyacheslav Shevelyov.

	 To add the EpanetCSSharpLibrary class file, first we download it from the
following link: https://www.imta.gob.mx/biblioteca/download/?key=962785
or from Elad Salomons’ website, and we copy it to the ConnectAPI folder, as
can be seen on Figure 4.25. Then from Visual Studio 2017, we load the class
file, like shown on Figure 4.26. It is recommended to save all changes as they
are made to the project.

http://www.water-simulation.com/wsp/
http://www.water-simulation.com/wsp/
http://www.water-simulation.com/wsp/2013/04/21/using-epanet-Toolkit-in-csharp/
http://www.water-simulation.com/wsp/2013/04/21/using-epanet-Toolkit-in-csharp/
http://www.imta.gob.mx/biblioteca/download/?key=962785
http://www.water-simulation.com/wsp/2014/02/25/epanet-class-for-c-sharp/
http://www.water-simulation.com/wsp/2014/02/25/epanet-class-for-c-sharp/
https://www.imta.gob.mx/biblioteca/download/?key=962785

— 61 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

Figure 4.25. Copying the EpanetCSSharpLibrary class to the project folder

Figure 4.26. Adding the EpanetCSSharpLibrary class using Visual Studio 2017

— 62 —

U s i n g t h e E pa n et To o l k i t

C.	 Copying the epanet2.dll file in the Debug folder

	 After adding the EpanetCSSharpLibrary to the project, we need to copy the
Epanet (epanet2.dll version 2.00.12) library within the “Debug” folder which
is in the “bin” folder. For this we have to click on the “Show all folders” button
from the Solution explorer to view the “bin” and “obj” folders, as can be seen in
Figure 4.27.

Figure 4.27. Viewing the bin y obj folders with the solution explorer

	 For users that don’t have the Epanet library (v. 2.00.12), it can be downloaded
from the official EPA website https://www.epa.gov/sites/production/
files/2014-06/en2toolkit.zip.

	 Upon opening the “Debug” folder (Figure 4.28), we can verify if the Epanet
library has been copied correctly.

https://www.epa.gov/sites/production/files/2014-06/en2toolkit.zip
https://www.epa.gov/sites/production/files/2014-06/en2toolkit.zip

— 63 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

	 After the previous steps we can add controls to our form. They are the same
ones that were added to Visual Basic 6.0 and Visual Basic 2017.

D.	 Preparing our form

	 The controls that will be added to the form are as follows: 01 GroupBox, 04
Label, 02 Button, 04 Textbox, 01 OpenFileDialog. The last control is only
visible in design mode not in run time mode. All these controls are found in
the toolbox window (Figure 4.29), should it not be visible, we can activate it by
pressing Ctrl+Alt+X or clicking the toolbox in the View menu.

Figure 4.28. Copying the epanet2.dll file in the Debug folder

— 64 —

U s i n g t h e E pa n et To o l k i t

	 On Table 4.4, we can see the original names of the controls as well as the new
ones added to the form, additionally, you can see the content they will have in
the Caption and Text properties.

Figure 4.29. Visual Studio 2017 (C#) Toolkit

Table 4.4. Controls added to the main form

Property: Name
[Original]

Property: Name
[Changed]

Property

GroupBox1
Label1
Label2
Label3
Label4
TextBox1
TextBox2
TextBox3
TextBox4
Button1
Button2
OpenFileDialog

GBContainer
LblINP
LblNumLinks
LblNumNodes
LblFlowUnt
TxtINP
TxtLinks
TxtNodes
TxtFlowUnt
BtnOpen
BtnOk
OpenFileDialog

Text: empty
Text: Select the Epanet Inp file
Text: # of Links
Text: # de Nodes
Text: Flow Unit
Text: empty
Text: empty
Text: empty
Text: empty
Text: …
Text: Ok
FileName: empty

— 65 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

E.	 Working with the Epanet Toolkit

	 The Buttons OpenBtn and AcceptBtn will be associated with a cluster of
sentences that will permit the selection of the Epanet inp file and the retrieval of
the total number of junctions and links, and the unit flow used. Before using the
ENopen, ENgetcount, ENgetflowunits, and ENclose methods or functions it is
necessary to import the namespaces EpanetCSSharpLibrary, that will contain
the ‘Epanet’ class, which in turn will hold the aforementioned methods.

	 If we wish to consult the headloss formula, it will not be possible through the
Epanet Toolkit since such function does not exist in that library. To get this, it
will be necessary to use the native Visual C# functions and to search through the
inp file until finding said parameter within the [OPTIONS] section. In Figure
4.30, part of the source code used along with the form in run time mode can be
seen as well as the results. To download the complete source code, click on the
following link: https://www.imta.gob.mx/biblioteca/download/?key=231.

https://www.imta.gob.mx/biblioteca/download/?key=231

— 66 —

U s i n g t h e E pa n et To o l k i t

Figure 4.30. Running Visual Studio 2017 (C#) and results

4.5.	 Python Shell (Python)

Python is a general-purpose programming language that is free even for business use.
It bets on simplicity, versatility and developmental quickness. It is a scripting language
that is platform-independent (Windows, Mac, Linux, etc.) and object oriented. It is
made for programming any type of application, from Windows applications to network
servers and even web pages.

It is a mutiparadigmatic programming language because it supports object orientation,
imperative programming and to a lesser degree, functional programming4.

4		 https://en.wikipedia.org/wiki/Python_(programming_language)

https://en.wikipedia.org/wiki/Python_(programming_language)

— 67 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

It is an interpreted language, which means that it is not necessary to compile
source code to run it, which offers advantages like developmental quickness and
disadvantages like a lower speed.

Python has become popular thanks to the number of libraries it contains and the
functions incorporated into the language itself, which help to carry out many routine
tasks without the need to program them from scratch. It is worth noting that Python
has a very visual syntax thanks to its indented notation (with margins) of required
compliance.

The Python interpreter and the extensive standard library are freely available in
binary form and in source code for the main platforms off of the Python website,
http://www.python.org/, and can be distributed freely. The same website has
distributions and links to many free third-party Python modules, programs, tools
and additional documentation.

Python is Open Source, anyone can contribute to its development and
dissemination. Moreover, it is not necessary to pay for a license to distribute
software developed with this language, even its interpreter can be distributed
freely for different platforms. The latest version of Python goes by several names
among them, Python 3000 or Py3K, even though it is habitually referred to as
Python 3.

Using this programming language, we will import an Epanet module (a type of
wrapper) to call functions found in the Epanet (version 2.00.12) API from a Python
3.3 integrated development environment (since this wrapper only works with
Python 3). To be able to use the Epanet library functions we have to already have
the Epanet 2.00.12 application installed from the official EPA page, since its wrapper
(epanet2.py) searches for the (epanet2.dll) library within our computer: https://
www.epa.gov/sites/production/files/2014-06/en2setup_0.exe.

Once Python 3.3 is installed, we open up the Python Shell application and it will
show the Epanet functions step-by-step. We will work with the same network model

— 68 —

U s i n g t h e E pa n et To o l k i t

(Net3.inp) and the total number of network junctions and links, and the flow unit
used will be retrieved.

A.	 Installing Python 3.3

	 In case it is not installed we can go to the following link https://www.python.
org/downloads/windows/, look for the section Python 3.3.0-2012-09-29 and
download the Windows x86-64 MSI.exe installer, as shown in Figure 4.31.

Figure 4.31. Download link for Python 3.3 from the official webpage

	 After following the default installation process, we will have Python installed
on our computer (Figure 4.32). Among the installed files there is one called
IDLE (Python GUI). IDLE means Integrated DeveLopment Environment.
This is a programming tool that permits for the writing and editing of Python
code (Figure 4.33). It is a multi-window text editor that has an autofill function,
and an integrated debugger along with the possibility of step-by-step execution
tracking with interruption points and a stack viewer. For more on IDLE consult
the following link: https://docs.python.org/3/library/idle.html.

https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/

— 69 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

Figure 4.32. Installing Python 3.3

Figure 4.33. Python Shell tool in Python 3.3

— 70 —

U s i n g t h e E pa n et To o l k i t

B. 	 Download and installation of the Epanet2 0.4.0.1dev file

	 To connect to the Epanet library and use its functions using the Python Shell
tool, it is necessary to install a package from inside the Python directory,
specifically, the file: “/Python33/Lib/site-packages/”. For that we go to the
following link https://pypi.python.org/pypi, which is a repository of packages
and/or Python modules that the community develops and can be downloaded
free of charge under the user’s responsibility.

	 If we want to search the package or module and we don’t remember the link, we
can write “Epanet” in the text box on the right side of the page (Figure 4.34),
and at that moment we get a list of what we might be searching for as shown in
Figure 4.35.

Figure 4.34. Searching for the Epanet2 0.4.0.1dev installer

— 71 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

	 Upon clicking on the name of the “Epanet2 0.4.0.1dev” installer, it redirects
us to the main page of the file we are seeking to install. Once there, we click
on the green button that is on the right side of the page and it takes us to the
file section for downloading. We will click on “Epanet2-0.4.0.1dev.win-amd64-
py3.3.exe (md5)”, as shown in Figure 4.36.

Figure 4.35. Result of the Epanet2 0.4.0.1dev installer search

Figure 4.36. Downloading the “Epanet2 0.4.0.1 dev” installer

	 Once downloaded we begin the installation process. Inside said process,
previous installation of the Python 3.3 will be verified as can be seen in Figure
4.37.

— 72 —

U s i n g t h e E pa n et To o l k i t

Figure 4.37. Verifying the Python 3.3 directory in the installation process

	 Now the folder “site-packages” should contain two additional folders and a
Python file, as seen in Figure 4.38. In that folder there might be other packages
or modules from other installations.

Figure 4.38. Installing the epanet2 package, EPANET2-0.4.0.1dev and _epanet2

— 73 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

C. 	 Working with the Epanet Toolkit

	 Now we are almost ready to begin using the Epanet functions, but first it will
be important to explain a few things. Our package and module of interest are
called epanet2, as shown in Figure 4.39. The epanet2.py module is the wrapper
in which the declared global variables and functions are found that are used to
modify the values of our network model.

Figure 4.39. “epanet2” package and “epanet2” module

	 The next step is to import the “epanet2” module which is found inside the
“epanet2” package. For that we open the Python Shell tool and we write the
line of code that appears in Figure 4.40. To access the Epanet library functions
written in the epanet2.py file, we have to import the namespace (epanet2.
epanet2). Afterwards, in the following line of code we go back to writing said
namespace followed by a period and the name of the function to be used.

Figure 4.40. Importing the epanet2.py module

— 74 —

U s i n g t h e E pa n et To o l k i t

	 It is also possible to abbreviate the namespaces using an alias. For that, during
the import phase, the “as” key is added followed by an alias which we will use
to refer to that imported namespace in the future. In our case, writing “epa” will
be the equivalent to writing the namespace “epanet2.epanet2”.

	 A large amount of that source code can be seen in Figure 4.41, where we will go on
to retrieve the total number of nodes, links as well as the flow unit in the Net3.inp
network. The ConnectEpanetAPI.py file can be downloaded off of the following
link https://www.imta.gob.mx/biblioteca/download/?key=232. In this file, all
that appears in the Python Shell tool text editor (code and results) is saved using the
line-by-line mode (do not copy the file in the command window). It is supposed
that the Net3 file is to be found in the E:/ directory, should that not be the case then
update the path. The path names do not allow for blanks or special characters.

Figure 4.41. Result of consulting the Net3.inp file using Python Shell

 https://www.imta.gob.mx/biblioteca/download/?key=232
https://www.imta.gob.mx/biblioteca/download/?key=232

— 75 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

	 As shown in Figure 4.41, the result appears immediately after pressing the Enter key
on the last command line. If we wish to modify some input data from the Net3.inp
network file, whether it’s eliminating or adding elements (junctions/links), we have
to write everything all over. A very common practice by programmers is to write the
source code using the NotePad++ application and to run the module using Python
Shell.

	 Now we will learn to write source code using NotePad++. If we don´t
have said tool installed, we can download it from the following link:
https://notepad-plus-plus.org/. The source code is almost the same as the one
used in the Python Shell. We open the NotePad++ application, write the code that
appears in Figure 4.42 and we save the file with the name ScriptEpanetToolkit.
py. If we prefer to download the code file, click on the following link:
https://www.imta.gob.mx/biblioteca/download/?key=242.

Figure 4.42. Source code (Python Language) written using NotePad++

https://www.imta.gob.mx/biblioteca/download/?key=242

— 76 —

U s i n g t h e E pa n et To o l k i t

	 To run Python files, there are two ways to do it: Importing the script or running
the script using Python Shell.

1. 	 Importing script using Python Shell

	 To run a script directly using Python Shell, it must be saved in the following
direction /Python33/Lib/site-packages, like shown in Figure 4.43.

Figure 4.43. Copying the ScriptEpanetToolkit.py file to the site-packages folder

	 After writing “import ScriptEpanetToolkit” in the Python Shell editor and
pressing the Enter key, the result will be shown (Figure 4.44).

Figure 4.44. Importing the ScriptEpanetToolkit file and showing results

— 77 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

2. 	 Running script using Python Shell

	 In this case it is not necessary to save our script in the “site-packages” folder,
it can be in any removable or disc unit. First we open Python Shell and using
the “open…” option from the File menu, we will search for our script that
will appear in another window from which we will run the Script. For that
we will click on the “Run” menu and then we will click on the “Run Module”
command, as can be seen in Figure 4.45. The result will appear in the main
Python Shell, see Figure 4.46.

Figure 4.45. Running script from Python Shell

Figure 4.46. Result of running script

— 78 —

U s i n g t h e E pa n et To o l k i t

4.6.	 Dev-C++ (C++)

C++ is a programming language created by Bjarne Stroustrup in the AT&T labs in
1983. Its creator took the most popular programming language at that time, C, as its
basis. The intention of its creator was to extend the C language using mechanisms
that would permit the manipulation of objects. In that sense, from the perspective of
object-oriented languages, C++ is a hybrid language5.

The name C++ was proposed by Rick Mascitti in 1983, when the language was used
for the first time in a scientific laboratory. Before that, it bore the name “C with
classes”. In C++, the expression “C++” means “increments of C” and refers to C++
being an extension of C.

Stroustrup saw the need to make the programming in C language easier. For that he
redesigned C, broadening its possibilities while conserving its main quality, allowing
the programmer to have full control at all times, enabling faster speeds that were not
possible in other languages.

C++ took C to a new paradigm of classes and objects with which he sought a more
human understanding based on the construction of objects with their own, exclusive
characteristics grouped in classes.

In this section we will learn how to import an Epanet (epanet2.h) header file, and
work with the functions in the Epanet dynamic library (epanet2.dll) using a Dev-C++
programming environment (freeware). The header file to be used is not the same as
the file distributed on the EPA (Toolkit) website, since said file is prepared for use
with 32-bit Microsoft Visual C 6.0.

As we have done with the previous languages, we will be using the Net3.inp network model
to retrieve the total number of junctions and links, as well as the flow unit being used.

5		 https://en.wikipedia.org/wiki/C%2B%2B

— 79 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

A.	 Installing the Dev-C++ application

	 Dev-C++ is an integrated development environment (IDE), at the same time it
is a free compiler for programming in the C/C++ language. The environment is
developed in Borland’s Delphi language. It has a page of optional packages that
can be installed, with different open-source libraries.

	 Among its most notable characteristics are: integrated debugger, source
program editor compatible with a C/C++ syntax, multiwindow editor with
multiple editing options, independent files and multifile projects can be worked
on, it possesses an installation package generator for Windows environment
programs, it can generate DOS programs (console mode) - Windows
applications - DLLs, independent windows for the projects manager - editor -
compilation results, compilation results - linker - resource generator, it permits
the integration of external tools via a “tool manager”, etc.

	 To download the latest version of Dev-C++ (Dev-Cpp 5.11 TDM-GCC 4.9.2
Setup.exe), go to the official blog: http://orwelldevcpp.blogspot.com.es/.
The installation process is quite simple, all that is necessary is to follow the
installation guide.

B. 	 Create a directory for the project

	 Before beginning to use the Dev-C++ application we must create a project
folder to save the epanet2.h and epanet2.dll files as well as the files that
are created for the project. In Figure 4.47, a folder was created named
Project1, in the following directory C++\, and in the project folder we
will save the header file (epanet2.h) and the Epanet dynamic library
(epanet2.dll). These two files can be downloaded from the following link:
https://www.imta.gob.mx/biblioteca/download/?key=962789.

	 Each user can create his project folder in any storage unit so long as it isn’t write

protected.

https://www.imta.gob.mx/biblioteca/download/?key=962789

— 80 —

U s i n g t h e E pa n et To o l k i t

Figure 4.47. Copying the epanet2.h and epanet2.dll files to the Project1 folder

C.	 Configuring project options using Dev-C++

	 The first thing we will do is open our Dev-C++ 5.11 application and create a new
project. For that we need to use the following steps: File >> New >> Project.
A new window will appear in which we will select “Empty Project” from the
Basic tab, and we will give our project a name. We will keep the suggested name
“Project1” and we will click on the Ok button (Figure 4.48). After that we save
our file in the “Project1” folder. Next, we change the name of our first “.cpp” file
to ConnectAPIEpanet, by clicking on the Save button, (Figure 4.49). The final
look that our project will have using the Dev-C++ application, and the other
files created in the folder Project1 can be seen on Figure 4.50.

Figure 4.48. Creating a new project using Dev-C++

— 81 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

Figure 4.49. Saving the ConnectEpanetAPI.cpp file inside the Project1 folder

Figure 4.50. Files generated in the Project1 folder

— 82 —

U s i n g t h e E pa n et To o l k i t

	 The next step will be to configure some project options to be able to work with
our Epanet library, for that we will go to the Project menu and select Project
Options and a dialogue box will appear as can be seen on Figure 4.51. This box
has eight tabs in which we’ll be modifying some of the default values.

Figure 4.51. “Project Options” window using Dev-C++

	 In the “Main” and “Files” tabs there will be no adjustment to the default values.
In the “Compiler” tab we will select the TDM-GCC 4.9.2 32-bit option Release
and confirm using the “Yes” button to the changes made (Figure 4.52). In the
“Compiler” tab there are six more tabs where we will only modify the Generate
Information parameter in Debug from “No” to “Yes” on the “Linker” tab.

— 83 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

Figure 4.52. Selecting a compiler to use

	 To link the file paths for the epanet2.h and epanet2.dll files, we must go to the
“Parameters” tab, place the cursor over the Linker section and look for both
files in the project folder, then click on the Add Library button or File and add
them to the list, see Figure 4.53.

Figure 4.53. Search and selection of epanet2.dll and epanet2.h files

— 84 —

U s i n g t h e E pa n et To o l k i t

	 In the Library and Include directories found in the “Directories” tab, we
are going to add the directory where the epanet2.dll and epanet2.h files are
saved. Both files are available in the following directory: C:\Users\admin\
Documents\ToolkitEpanet\C++\Project1, as displayed in Figure 4.54.

	 Next, in the “Output” tab, we will look for and select the Project1 folder to save
the .exe file and an object file after compiling the code as seen in Figure 4.55.
Lastly, we will force the name change of the .exe file to ConnectEpanetAPI.exe,
and we will close the Options window to Accept all the changes.

Figure 4.54. Adding a directory to save the epanet2.h and epanet2.dll files

Figure 4.55. Output tab settings

— 85 —

C o n n e c t i n g t h e E p a n e t A P I t o d i f f e r e n t p r o g r a m m i n g e n v i r o n m e n t s

D.	 Working with the Epanet Toolkit

	 After configuring the project options, what follows is to write the lines of code
in the C++ language that will permit us to retrieve the total number of junctions
and links in the network, as well as the flow unit being used. To compile and
run our code we click on the Compile menu (twice), and then we click on Run
(only once). In Figure 4.56 we can see the results obtained from the system
console.

	 The project can be downloaded from the following link:
https://www.imta.gob.mx/biblioteca/download/?key=241. If it is necessary
to run the source code from the previous link directly, keep in mind the required
path change of the Project1 folder and modify the file path of the (Net3.inp)
network being studied, as well as modify project options using Dev-C++.

Figure 4.56. Source-code compiling result

https://www.imta.gob.mx/biblioteca/download/?key=241

— 86 —

U s i n g t h e E pa n et To o l k i t

4.7.	 Microsoft Office Excel 2016 (VBA)

Microsoft Excel is a spreadsheet application that is part of the Microsoft Office
suite. Organized in rows and columns, it is capable of making extensive calculations
in seconds through formulas of all kinds. It is very useful for solving financial and
accounting operations, with formulas, graphs and an embedded programming
language. Since 1993, Excel has included Visual Basic for Applications (VBA), a
programming language based on Visual Basic, which adds the ability to automate
tasks in Excel and to provide user-defined functions for use in worksheets. VBA
is a powerful addition to the application, which includes a complete integrated
development environment (IDE) also known as the VBA Editor. Macro recording
allows to play code repeatedly, doing the user’s tasks in an automated way. Likewise,
you can create forms and controls in the worksheet for communication with the
user. VBA also supports the use (but not the creation) of ActiveX DLLs (COM).

Many people use it in various fields. Its easy handling, design, and speed make it very
competitive when using it at work. Its creator, Charles Simonyi, of Hungarian origin, was
the one who supervised the creation of Microsoft Office, along with Richard Brodie.

Excel made its appearance in 1982 when Microsoft released a spreadsheet called
Multiplan, which was popular in large systems, but could not surpass its competitor
Lotus 1-2-3, which worked very well on personal computers, reason why Microsoft
developed a new spreadsheet to compete with Lotus 1-2-3. In 1985, the first version
of Excel was released for the Macintosh. The first version for Windows was called
Microsoft Excel 2.0 and was launched in 1987. In 1988 Excel exceeded the popularity
of Lotus 1-2-3. The first time Excel was introduced in Office was in 1993. Before
Excel and Multiplan there was VisiCalc, the first spreadsheet created by Dan Bricklin.

A.	 Display the “Developer” tab

	 The Developer tab is used for macro and form control creation. This tab is not
shown by default in Excel. In order to display it, we click on the menu “File” and
select Options. The Excel Options will be shown where we click on Customize

— 87 —

	 Another way to reach quickly the Excel Options dialog box is to right click
options ribbon and select Customize the Ribbon.

	 The Developer tab (Figure 4.58) contains the necessary commands for creating
macros and also for running previously saved macros. From this tab we can
open the Visual Basic Editor where the VBA code can be written.

Figure 4.57. Displaying the Developer tab

Figure 4.58. Menu Developer and its commands

Ribbon. Next we check the Developer selection box in the Main Tabs section,
and accept the change made by clicking on OK. Figure 4.57 shows these steps.

— 88 —

B.	 Prepare the epanet2 module

	 In order to make use of the Epanet library functions, we must declare first the
global constants and the functions themselves in a Visual Basic module. In the
Developer tab we click on Visual Basic. The Microsoft VBA editor is thus opened,
where we go to the Insert menu and click on Module. This first module will be
classified in the Modules folder and have the name Module1 (Figure 4.59).

Figure 4.59. Inserting Module1 into Project

— 89 —

	 Next, we change the Project and module default names. The project will be
named ConnectAPIEpanet and the module epanet2 (Figure 4.60).

Figure 4.60. Changing the project and module names

	 The header file epanet2.bas can be downloaded from:
	 https://github.com/OpenWaterAnalytics/EPANET/blob/master/include/

epanet2.bas.

	 Elad Salomons made some ajustments to that file in order to use the new
Epanet library (versión 2.1) from Visual Basic 6.0. In our module epanet2 we
copy its content from line 3 to line 233.

	 The 74 function declarations in the epanet2 module turn red (Figure 4.61).
This is because the functions are declared to work on 32-bit Excel. The keyword
PtrSafe must be added after the instruction Declare in order to fix the error
(Figure 4.62).

https://github.com/OpenWaterAnalytics/EPANET/blob/master/include/epanet2.bas
https://github.com/OpenWaterAnalytics/EPANET/blob/master/include/epanet2.bas

— 90 —

Figure 4.61. Error at declaring the Epanet functions

Figure 4.62. Correct declaration of the Epanet functions

— 91 —

	 What follows is to save our Excel file. We write a name, for example
ConnectAPIEpanet, and select Excel Macro-Enabled Workbook as file type
(Figure 4.63).

Figure 4.63. Saving the ConnectAPIEpanet file

C.	 Copying epanet2.dll to the folder System

	 Errors have been fixed and new capabilities added in the new Epanet library
version 2.1. All the documentation about that new version can be consulted
from the WaterAnalytics web site: http://wateranalytics.org/EPANET.

	 The Epanet libraries, for 32 bit and 64 bit computers, can be downloaded from
the following link: https://github.com/OpenWaterAnalytics/EPANET/
releases (Figure 4.64).

http://wateranalytics.org/EPANET/
https://github.com/OpenWaterAnalytics/EPANET/releases
https://github.com/OpenWaterAnalytics/EPANET/releases

— 92 —

	 After decompressing the file, we search for the folder named 64, and copy the
epanet2.dll file there to the following folder: C:\Windows\System (Figure
4.65).

Figure 4.64. Downloading the Epanet-2.1-win.tar.gz file

Figure 4.65. “epanet2.dll” 64-bit file

— 93 —

D.	 Worksheet preparation

	 We reopen our Excel Macro-Enabled ConnectAPIEpanet Workbook (in case
we closed it) and add some tags and two buttons, as shown in Figure 4.67.

Figure 4.66. Copying epanet2.dll to the folder System

Figure 4.67. Excel worksheet

— 94 —

Figure 4.68. Inserting the button controls

	 In order to add the two buttons shown in Figure 4.67, we open the Developer
tab and click on Insert. A dialog box is displayed (Figure 4.68) where we select
the control Button (Form Control). At left clicking on the cell “C10” to draw the
control, a floating dialog box appears where we are asked to assign a macro, but
by now no macro will be assigned. The same process is applied for the second
button, or the Copy and Paste option can be used.

	 The buttons added exhibit the name Button by default, that can be changed by
right clicking on each of them and selecting Edit Text.

E.	 Coding inside Microsoft VBA

	 In order to write lines of code, that will be associated with the Open and Accept
buttons, we must add first a new module. We go to the Visual Basic option from
the Developer menu. The Visual Basic Editor is opened, where we click on Insert
and add the new module and change its default name to Processes.

— 95 —

	 In the module, the routines BtnOpen_Click and BtnAccept_Click are written,
that will be assigned to buttons Open and Accept respectively. The code for
each of them can be seen in Figure 4.69 and Figure 4.70. In order to assign
these routines to the corresponding buttons, we right click on each of them
and select Assign Macro…. Next, the name of each routine to be associated is
written in the dialog box (Figure 4.71).

Figure 4.69. Routine BtnOpen_Click

— 96 —

Figure 4.70. Routine BtnAccept_Click

Figure 4.71. Assign the macro BtnOpen_Click to the Open button

— 97 —

F.	 Running the macros

	 The macros are executed in the following order. First the button Open is
selected. Its execution displays a dialog box to navigate through the computer
and external storage devices, and select an Epanet Inp file. The path of the
selected file will be written on the worksheet. The Accept button runs the
Epanet library functions for determining the total number of nodes (demand
nodes, reservoirs and tanks) and links (pipes, pumps and valves), as well as the
flow unit (Figure 4.72).

	 To download the file ConnectAPIEpanet, that contains the macros, click on
the following link: https://goo.gl/AzBzvA.

Figure 4.72. Result of applying the macros

https://goo.gl/AzBzvA

— 98 —

— 99 —

The following is a presentation of five practical cases in
which the majority of the Epanet library v2.00.12 functions
will be used using Microsoft Visual Studio 2017 (Visual

Basic .NET). These exercises do not pretend to resolve operational
improvement problems for water supply systems like sectorization,
simplification, system reliability, optimal design, optimization etc.,
rather, they seek only to teach the proper use of the functions in such a
way that combining them with the native functions that correspond to
each of the programming languages, will allow for more potent tools
that can be designed in favor of urban hydraulics.

Source code will not be written for each one of the practical cases, since that could
take up a large volume of pages, thus, only a step-by-step sequence will be used, and
the functions will be mentioned as they appear in this book. The network model that
will be used in all the proposed tasks will be the Net3.inp network. All the source
code generated can be downloaded using links that will be left at the end of every
task and will be gone further-into for better understanding.

The tasks that will be carried out in this chapter are: retrieving and modifying
network parameters, running a hydraulic and water quality simulation, retrieving
results and generating a report, calculating pressure at a specific junction for an
extended period of time, and changing the link direction.

P r a c t i c a l E x e r c i s e s5	

— 100 —

U s i n g t h e E pa n et To o l k i t

A.	 Retrieving and modifying network parameters

	 If we want to retrieve, for example, the ID of a demand node and its base
demand, ENgetnodetype, ENgetnodeid, and ENgetnodevalue will be needed.
In the case of a pipe, for retrieving its ID, start and end node, length, and its
status, ENgetlinkid, ENgetlinknodes, y ENgetlinkvalue will be used. Before
using these functions, however, it is necessary to call the ENopen function to
open the Epanet inp file and after using it, ENclose must be called to close the
input file and free up the memory used on the computer.

	 To save the drawn-up information, a user-defined vector data type will be
created in which the Epanet inp file data will be stored. In Figure 5.1 and Figure
5.2 part of the source code used to retrieve node and pipe data can be seen,
which has been added to the code from the ConnectEpanetAPI example given
in the previous section.

	 It is important to verify that the information being saved in our vector is correct.
For that, an interruption point will be inserted near the end of the event upon
clicking the Accept button, specifically on the line of code error = ENclose().
We can see the results of the data stored in the DemandNode and Pipes vectors
added to the inspection window in Figure 5.3.

— 101 —

P r a c t i c a l E x e r c i s e s

Figure 5.1. Functions for retrieving data from demand nodes

Figure 5.2. Functions used to retrieve pipe data

— 102 —

U s i n g t h e E pa n et To o l k i t

	
	 To carry out any modification of the parameters that define the characteristics

or the mode of operation of our network model, the following functions
should be used with the ENset prefix (ex. ENsetnodevalue, ENsetlinkvalue,
ENsetpattern, etc.). As an example, we are going to change the diameters of
the pipes on the Net3 network model, from 12” to 16” (inches). Moreover, the
changes made to the Pipes().Diameter will be saved if a list of IDs is desired
for the pipes with the new diameters. From the Epanet application we make a
query that will permit us to visualize and know the total number of pipes to be
modified. We can do this through the following sequence of commands: View
menu >> Query (Figure 5.4).

Figure 5.3. Reviewing data stored in the DemandNode
and Pipes vectors

— 103 —

P r a c t i c a l E x e r c i s e s

	 If we wish to modify the diameters, it will be necessary to select first the entire
network from the Edit menu: Edit >> Select Region and the Edit >> Group Edit
and configure the options in the dialogue box to make the changes (Figure 5.5).

	 Using the Epanet library functions we also get the same results, see Figure 5.6.

Figure 5.4. Consulting the number of pipes with a 12” diameter using Epanet

Figure 5.5. Modifying pipe diameters with the Epanet Group Edit tool

— 104 —

U s i n g t h e E pa n et To o l k i t

Figure 5.6. Modifying pipe diameters with the Epanet library function

	 The source code used for this first task can be downloaded off of the following
link: https://www.imta.gob.mx/biblioteca/download/?key=237. The module
file, Epanet library (v2.00.12) and the Net3.inp can be found in the compressed
folder.

B.	 Running a hydraulic and water-quality simulation model

	 The most important parts of the Epanet library are the hydraulic simulation model

and the water-quality simulation model. We can get the results of a hydraulic
simulation in two ways. One is using the ENsolveH function that enables us to run
a complete extended period analysis, without having access to the intermediate
results, the second way is by using the sequence of ENopenH, ENinitH, ENrunH,
ENnextH, ENcloseH, functions to run the simulation step-by-step.

	 The first method is recommended if a water-quality analysis will also be carried
out. With this method, the results of the hydraulic computations for each one
of the time steps are always saved to a hydraulic results file (binary file). The
second method is more appropriate when accessing the intermediate results is
desired throughout the all computational time steps or if it is intended to carry
out many runs in an efficient manner. In this case, only one function call to

https://www.imta.gob.mx/biblioteca/download/?key=237

— 105 —

P r a c t i c a l E x e r c i s e s

ENopenH will be used to start the process, the following is a succession of calls
to ENinitH-ENrunH-ENnextH to run each stage of the analysis, and finally the
ENcloseH function will be called to close the hydraulic module. If a steady-state
analysis is to be run, it is not necessary to use the ENnextH function.

	 In the case of water-quality analysis, the hydraulics results need to have
already been generated through running a hydraulic simulation or importing
a previously-saved results file. As is the case of hydraulic analysis, there are
two forms to carry out a water-quality simulation. The first is by using the
ENSolveQ function to run a complete extended-period water-quality analysis,
without having access to the intermediate result files, and the second is using
the sequence of ENopenQ-ENinitQ-ENrunQ-ENnextQ-ENcloseQ functions
to carry out a step-by-step simulation. (Swapping ENnextQ for ENstepQ, a
simulation can be made advancing one time step at a time).

	 Having briefly described how to use the Epanet library functions for the
hydraulic and water-quality calculation, we will go on to write lines of code
with the aforementioned methods.

Hydraulic simulation

1) 	 Method 1. Using the ENsolveH function

	 To run a complete hydraulic simulation it is necessary to use the following
sequence of functions: ENopen-ENsolveH-ENsaveH-ENclose. The ENopen
function receives three input parameters. If you want to have the hydraulic
results, it will be necessary to specify that in one of its parameters and use the
ENsaveH function to save them, if you neglect to do so, said file with the *.out
extension will be erased upon calling the ENclose function.

	 The Hydraulic Results File (*.out) is a binary file, used for saving the results of
a hydraulic analysis. In this file, the results for all the regular time steps set in the
clause REPORT TIMESTEP in the [TIMES] section (default 1 hour) are saved.

— 106 —

U s i n g t h e E pa n et To o l k i t

All the same, the intermediate results in which hydraulic changes take place (e. g.
opening or closing of pumps or valves due to some rule-based control) are not
saved.

	 In Figure 5.7 we can see the functions employed to carry out a complete
simulation. After running the code, two files will have been created with the
network file name along with the *.rpt and *.out file extensions in the same
folder where the Epanet inp file is (Figure 5.8).

Figure 5.7. Use of the ENsolveH and ENsaveH Epanet library functions

Figure 5.8. Net3.rpt and Net3.out files created upon finishing the process

— 107 —

P r a c t i c a l E x e r c i s e s

	 If we wish to save the flow results for all the computational time steps, including
those for the intermediate time steps, with the purpose of using them in a
water quality analysis, we must indicate it, by using the HYDRAULICS USE
filename in the [OPTIONS] section of the Input file, or making a ENusehydfile
call function. The source code can be downloaded off of the following link:
https://www.imta.gob.mx/biblioteca/download/?key=235.

2)	 Method 2. Using the ENopenH-ENinitH-ENrunH-ENnextH-ENcloseH
functions.

	 For a better understanding of the use of the group of functions destined to
control the simulation process, the following exercise is suggested. Calculate
the flow, velocity and status of pipes, as well as the actual demand, the total
hydraulic head and the pressure at all demand nodes at 14:00 h.

	 The Net3 network model has the following configuration in the [TIMES]
section: duration 24 hours, 1 hour hydraulic computational time step, 1 hour
report interval, Report Start Time at 0 hours.

	 The previously mentioned demand node and pipe properties at 14:00 h
must be obtained. The variable Time = 14*3600.0# determines the instant
of time to be captured. In Figure 5.9 an important part of the source code
can be seen where the ENrunH-ENnextH functions are used to carry
out a step-by-step simulation and capture the desired results at 14:00
h. To download the complete source code, click on the following link:
https://www.imta.gob.mx/biblioteca/download/?key=236.

https://www.imta.gob.mx/biblioteca/download/?key=235
https://www.imta.gob.mx/biblioteca/download/?key=236
https://www.imta.gob.mx/biblioteca/download/?key=236

— 108 —

U s i n g t h e E pa n et To o l k i t

Figure 5.9. Step-by-step hydraulic simulation with the Epanet library

— 109 —

P r a c t i c a l E x e r c i s e s

Water-quality simulation

Epanet was born out of the intention to predict the fate of chemical substances
transported by the flow in a water distribution network.

Aside from analyzing chemical substance transport, Epanet makes it possible
to study other phenomena related to water quality, such as mixing of water from
different sources, water age and source tracing, chlorine residual decay, growth of
chlorination by-products, the fate of a contaminant introduced to the network, etc.

Before running a water-quality simulation, it is necessary to already have generated
the hydraulic results via running a hydraulic simulation or importing previously-
saved hydraulic results file.

Just as was the case for hydraulic analysis, there are two ways to carry out a water-
quality analysis. We can use the ENsolveQ function or the group of ENopenQ-
ENinitQ-ENrunQ-ENnextQ-ENcloseQ functions.

To know how to use both ways, the following exercise is proposed. In this task we
are going to determine the fraction of flow that arrives to each one of our junctions
in the Net3 network, coming from the Lake reservoir (source tracing analysis). For
that we have to verify that the input values in the water quality options section are
correct. In Figure 5.10 we can see the information that needs to be entered to run a
source tracing analysis.

— 110 —

U s i n g t h e E pa n et To o l k i t

Figure 5.10. Introducing water quality parameters in Epanet

1) 	 Method 1. Using the ENsolveQ function

	 The ENsolveQ function runs a complete water-quality simulation, saving
the results at the regular time intervals in the Epanet binary results file
(*.out), without having access to intermediate results. In Figure 5.11 the
sequence of functions to be used jointly with the ENsolveQ function is
shown. To download the complete source code, click on the following link:
https://www.imta.gob.mx/biblioteca/download/?key=233.

Figure 5.11. Use of the ENsolveQ Epanet library function

https://www.imta.gob.mx/biblioteca/download/?key=233

— 111 —

P r a c t i c a l E x e r c i s e s

2)	 Method 2. Using the ENopenQ-ENinitQ-ENrunQ-ENnextQ-ENcloseQ
functions.

	 To apply the group of functions meant for water-quality analysis,
the following exercise is proposed. Determine the fraction of flow
coming from the “Lake” reservoir to all of the network nodes at 14:00
hours. In Figure 5.12, the core part of the corresponding code can
be seen. To download the complete code, click on the following link
https://www.imta.gob.mx/biblioteca/download/?key=234.

Figure 5.12. Step-by-step water quality simulation using the Epanet library

https://www.imta.gob.mx/biblioteca/download/?key=234

— 112 —

U s i n g t h e E pa n et To o l k i t

C.	 Retrieving computed results and generating a report

	 The ENgetnodevalue and ENgetlinkvalue functions, which we have used in
previous exercises, can be used to retrieve the calculated hydraulic and water-
quality results. In Table 5.1 the keywords used for retrieving element values in
a water distribution network using Epanet are given.

Table 5.1. Keywords to retrieve values after a simulation

For Nodes For Links
EN_DEMAND (Actual demand)
EN_HEAD (Hydraulic head)
EN_PRESSURE (Pressure)
EN_QUALITY (Actual quality)
EN_SOURCEMASS (Mass flow rate
per minute of a chemical source)

EN_FLOW (Flow rate)
EN_VELOCITY (Flow velocity)
EN_HEADLOSS (Headloss)
EN_STATUS (Actual link status)
EN_SETTING (Roughness for pipes, actual
speed for pumps, actual setting for valves)

	 The syntax for retrieving the values for an element in the network after running
a simulation is as follows: error = ENgetnodevalue (i, keyword, j), where error
is a numerical value and in the case that everything goes well, will return zero.
The “i” parameter is an index, that is to say, a position that corresponds to the
node in the Epanet inp file (which can be obtained using the ENgetnodeindex
or ENgetlinkindex functions), the “keyword” parameter is a code that is used
to specify the parameter to be recovered according to the kind of element (see
Table 5.1), and finally, the “j” parameter, is the variable where the calculated
value is to be stored.

	 The Epanet library has some functions that help to generate a results report
with a proprietary format. Although the possibility of writing our own reports
with the help of the previous functions in conjunction with other functions
particular to the programming language itself is always there, we can simplify
the writing of a personalized report, down to just the desired variables through
the use of some of the Toolkit functions. The ENsetreport function is used

— 113 —

P r a c t i c a l E x e r c i s e s

to define the format of a report, while the ENreport function generates said
report. This last function should be called only after having done a hydraulic or
water quality analysis.

	 In Figure 5.13 the core part of the code is shown, in which a report is
created with a list of all the network junctions whose pressure exceeds 50
psi. The complete code is available for download on the following link:
https://www.imta.gob.mx/biblioteca/download/?key=238.

	
	 The results will be saved in the results file with the *.rpt extension.

Figure 5.13. Functions that help to generate a results report

https://www.imta.gob.mx/biblioteca/download/?key=238

— 114 —

U s i n g t h e E pa n et To o l k i t

	 The ENsettimeparam function allows us to set a time parameter value. In
this case, all the results for the calculated instants have been specified to take
place at regular intervals. The ENresetreport function eliminates any format
command that comes before the [REPORT] section of the Epanet input
file, or that has been set through the ENsetreport function. The ENsetreport
function sets the formatting commands for customizing the results report. The
formatting commands are the same as the ones used in the [REPORT] section
from the Epanet input file. The ENreport makes a report in text format with
the results of the simulation and saves it in the results report file (*rpt). There
are other functions in the Epanet library such as ENsaveinpfile, ENgeterror,
ENwriteline, ENsavehydfile, ENusehyfile, which can be used according to each
simulation case. A description for each of them along with other functions that
have been used here can be found in the help file from the Epanet Toolkit.

D.	 Calculate the effect of demand variation on node pressure

	 To find a solution we will use a case study with the Net1_SI.inp network model.
In this exercise it will be necessary to find the resulting pressures at junction
“23”, for an entire simulation period (24 hours), as well as for three different
values of the base demand for same node.

	 One solution is to use the following sequence of functions, ENopenH-
ENinitH-ENrunH-ENnextH-ENcloseH, and to save the computed pressure
values in the vector as they appear. The resulting pressures can be gotten using
the ENgetnodevalue function. Another option is to get the pressure using a
result report file in which only the node to be analyzed is set. In this case, the
first solution has been opted for.

	 The core part of the code for the exercise’s solution can be seen in Figure 5.14. This
code, as well as the network model, are available for complete download on the
following link: https://www.imta.gob.mx/biblioteca/download/?key=239.

https://www.imta.gob.mx/biblioteca/download/?key=239

— 115 —

P r a c t i c a l E x e r c i s e s

Figure 5.14. Functions used to calculate pressure at node 23

— 116 —

U s i n g t h e E pa n et To o l k i t

E.	 Changing pipe orientation

	 Many times network models appear with a negative pipe flow upon running
a hydraulic simulation. This is not an error and is due to having imported the
network using AutoCAD, GIS, a Database, or any other storage means where
the link orientation does not match the flow direction of the current time step.

	 If the flow sign is predominantly negative, we can resolve this issue by using
the Epanet “Reverse” option. For that, we have to put the cursor over the link,
right click and select “Reverse”. This does not require much effort if there are
few links that need reversal. What if, however, there are hundreds or thousands
of oppositely oriented links? With the aid of certain functions contained in the
Epanet library, we can resolve this problem.

	 This issue is resolved by running a step-by-step hydraulic simulation and getting
the pipe flows throughout the simulation period. If the flow is negative in all the
simulation period time steps, that means that the pipes have not been digitized
in the final flow direction.

	 Since no such function exists in the Epanet library v2.00.12, we will use Visual
Studio 2017’s native functions (Visual Basic .NET) to recover the information
from the [PIPES] section, and the coordinates from the [VERTICES] section.
We will work with the Net1_SI.inp network model, whose link orientation has
been modified to verify that the algorithm works correctly.

	 The tool will ask that we select an Epanet inp file and that will give
us another (corrected) inp file in the same directory as the original
file, along with a text file with pipe IDs whose orientation has been
modified. To download the complete code, go to the following link:
https://www.imta.gob.mx/biblioteca/download/?key=240. In Figure 5.15 we
can see the operation of this tool.

https://www.imta.gob.mx/biblioteca/download/?key=240
https://www.imta.gob.mx/biblioteca/download/?key=240

— 117 —

Figure 5.15. Tool to reverse the oppositely-oriented links with help of the Epanet library

— 118 —

A B O U T T H E A U T H O R S

Oscar Tomas Vegas Niño

Agricultural engineer from the Trujillo National University
(Perú), he has a Master degree in Hydraulic and Environmental
Engineering from the Universitat Politècnica de València (Spain)
and two majors in the urban hydraulic and water resources field.
He participates actively in national and international congresses, is
scientific papers reviewer and collaborates with projects financed
by FYNCyT (Perú), all the while developing programming tools
using the Epanet library and Geographic Information Systems
(GIS). At the date of this book publishing, he finds himself
developing his doctoral thesis in the area of urban hydraulics
financed by the Peruvian government (PRONABEC).

Fernando Martínez Alzamora

Industrial Engineering doctor and Hydraulic engineering
professor at the Universitat Politècnica de València (UPV,
Spain). Author of the Spanish version of Epanet 2.0, over the
last 35 years, he has published numerous papers in journals and
congresses covering the use and improvement of this tool. He also
is responsible for the GISRed and SCARed applications aimed at
connecting Epanet to GIS environments to aid the construction
of models in SCADA systems for achieving real-time control of
water networks. He leads the REDHISP research group from the
Environment and Water Engineering Institute (IIAMA) of the
UPV.

— 119 —

Joan Carles Alonso Campos

Industrial Engineer from the Universitat Politècnica de València
(Spain). At the date of this publication, he is studying his
doctorate in the Water and Environmental Engineering at the
same university. His thesis project, financed through the Val I+D
program from the Generalitat Valenciana, has focused on the
development and implementation of algorithms for the energy
optimization of pressurized hydraulic networks.

Velitchko G. Tzatchkov

Civil Engineer from the Sofía Superior Civil Engineering Institute
(Bulgaria) and doctor in Hydraulics from the Hydrotechnique,
Irrigation and Drainage Institute from the same city. Since 1991
he has been researcher in Hydraulics at the Mexican Institute of
Water Technology. He has developed algorithms and computer
programming tools for the analysis, design and operation of water
distribution systems as well as pressure irrigation, including an
algorithm that broadens the Epanet modelling of water quality
with a dispersion term, which was published and accoladed in
the U.S.A. He has published numerous papers in journals and
congresses, and several books.

A B O U T T H E A U T H O R S

The book Using the Epanet toolkit
v2.00.12 with different programming
environments was published in April
2018 in digital format.
Mexican Institute of Water Technology.

	Cover page
	Contenido
	Tables
	Figures
	Presentation

	Prologue

	1 Epanet Software
	2 Epanet data structure
	3 The Epanet Toolkit
	4 Connecting Epanet’s API to programming environments
	5 Practical Exercises
	About the authors

	Back cover

